GPT nghiệm nguyên
xy-4=2x+3y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
GPT nghiệm nguyên
1, \(x^2-xy+y^2-4=0\)
2,\(5y^2+8y^2=20412\)
1.
PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$
$\Leftrightarrow (2x-y)^2+3y^2=16$
$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$
$\Rightarrow y^2\leq \frac{16}{3}< 9$
$\Rightarrow -3< y< 3$
Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$
Thay vô ta tìm được:
$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$
2.
PT $\Leftrightarrow 13y^2=20412$
$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)
Tìm nghiệm nguyên dương của phương trình : xy - 2x + 3y = 27
Tìm nghiệm nguyên của phương trình sau :
xy-2x+3y=-1
\(pt\Leftrightarrow x\left(y-2\right)=-3y-1\)
\(\Leftrightarrow x=\frac{-3y-1}{y-2}=\frac{\left(-3y+6\right)-7}{y-2}=-3-\frac{7}{y-2}\)
Để \(x\inℤ\)thì \(\frac{7}{y-2}\inℤ\)
\(\Leftrightarrow y-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
lần lượt thay các giá trị của y-2 ta tìm dc các cặp nghiệm (x;y) là:
(-2; -5); (4; 1); (-10; 3); (-4; 9)
Tìm nghiệm nguyên dương của PT: xy - 2x - 3y +1 = 0
Biết xo;yo;zo là nghiệm nguyên dương của phương trình x^2+y^2+z^2=xy+3y+2x-4
Khi đó xo+yo+zo=?
x^2 + y^2 + z^2 =xy +3y+2z-4 cơ mà
2(x^2 + y^2 + z^2)=2(xy+3y+2z-4)
2x^2 +2y^2 + 2z^2 -2xy-6y-4z+8=0
[(x^2 -2xy+y^2)+ 2(x-y)+1]+(x^2 -2x+1)+(y^2 -4y+4)+2(z^2 -2z+1)=0
[(x-y)^2 +2(x-y)+1]+(x-1)^2 +(y-2)^2 +2(z-1)^2 =0
(x-y+1)^2 +(x-1)^2 +(y-2)^2 +2(z-1)^2 =0
vì (x-y+1)^2 ;(x-1)^2;(y-2)^2;2(z-1)^2 lớn hơn hoặc bằng 0 với mọi x;y;z
suy ra (x-y+1)^2 =0 đồng thời (x-1)^2 =0 đồng thời (y-2)^2 =0 đồng thời 2(z-1)^2 =0
suy ra x-y+1=0 dong thoi x-1=0 dong thoi y-2=0 dong thoi 2(z-1)=0
suy ra x-y=-1 dong thoi x=1 dong thoi y=2 dong thoi z=1
Vậy Xo+Yo+Zo=1+2+1=4
giải phương trình nghiệm nguyên:\(3y^2-xy-2x+y+1=0\)
(x,y)=(-45,-13);(-25,-3);(3,-1);(23,9)
Tìm nghiệm nguyên \(x^2-xy+y^2=2x-3y-2\)
\(x^2-xy+y^2=2x-3y-2\)
\(\Leftrightarrow2x^2-2xy+2y^2=4x-6y-4\)
\(\Leftrightarrow\left(x-y\right)^2+x^2+y^2-4x+6y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right).2+4+x^2+y^2+2y=0\)
\(\Leftrightarrow\left(x-y-2\right)^2+x^2+\left(y+1\right)^2=1\)
lập bảng ra nha
Giải phương trình nghiệm nguyên:2x2-y2+xy-3x+3y-3=0
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
Sao bạn suy ra hay vậy
Tìm nghiệm nguyên
\(x^2-xy+y^2=2x-3y-2\)