\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0\)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0.\)
\(=\left(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x\right)+1\)
\(=x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1\)
\(=x\left(\frac{1\cdot5}{30}+\frac{1\cdot3}{30}-\frac{4\cdot2}{30}\right)+1\)
\(=x\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)+1\)
\(=x\left(\frac{5+3-8}{30}\right)+1\)
\(=x\cdot0+1=1\)
\(\Rightarrow\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0=1\)
trả lời:
\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0.61x+101x−154x+1+0.
=\left(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x\right)+1=(61x+101x−154x)+1
=x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=x(61+101−154)+1
=x\left(\frac{1\cdot5}{30}+\frac{1\cdot3}{30}-\frac{4\cdot2}{30}\right)+1=x(301⋅5+301⋅3−304⋅2)+1
=x\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)+1=x(305+303−308)+1
=x\left(\frac{5+3-8}{30}\right)+1=x(305+3−8)+1
=x\cdot0+1=1=x⋅0+1=1
\Rightarrow\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0=1⇒61x+101x−154x+1+0=1
ko chắc chúc bạn học tốt.
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)
\(\frac{8}{30}x-\frac{8}{30}x+1=0\)
\(0+1=0\)
\(\text{Mình thấy bài này có gì sai sai sai thì phải bạn à !}\)
xin lỗi các bạn nhé =1 chứ không phải =0 thông cảm cho mik nhé^^^
tim x
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(\Rightarrow x.0+1=0\)
=> 1=0 ( Vô lý )
Vậy \(x\in\varnothing\)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow x.\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)=1\)
\(\Rightarrow x.0=1\Rightarrow x=0\)
Vậy x=0
Tìm x , biết :
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{-1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)
TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)
TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)
\(\Rightarrow x\in\left\{2;3;-4\right\}\)
\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)
\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)
\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)
a) (1/7x - 2/7)(-1/5x + 3/5)(1/3x + 4/3) = 0
3 trường hợp:
TH1: 1/7x - 2/7 = 0 <=> 1/7x = 0 + 2/7 <=> 1/7x = 2/7 <=> x = 2.7/7 = 2
=> x = 2
TH2: -1/5x + 3/5 = 0 <=> -1/5x = 0 - 3/5 <=> -1/5x = -3/5 <=> x = (-3/5).(-5) = 3
=> x = 3
TH3: 1/3x + 4/3 = 0 <=> 1/3x = 0 - 4/3 <=> 1/3x = -4/3 <=> x = x = 3.(-4/3) = -4
=> x = -4
Vậy: x = 2, 3, -4
b) 1/6x + 1/10x - 4/15x + 1 = 0
<=> 1/6x + 1/10x - 4/15x = 0 - 1
<=> 1/6x + 1/10x - 4/15x = -1
<=> 1/6x.30 + 1/10x.30 - 4/15x.30 = -1.30
<=> 5x + 3x - 8x = -30
<=> 0 = -30
=> không có x thỏa mãn
a)\(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=\)\(0\)
b)\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(-\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
c)\(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
Tìm x biết:
a, \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Leftrightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Leftrightarrow x=11\)
b,\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Leftrightarrow\frac{1}{7}x-\frac{2}{7}=0\)hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\)hoặc \(\frac{1}{3}x+\frac{4}{3}=0\)
+) \(\frac{1}{7}x-\frac{2}{7}=0\Leftrightarrow\frac{1}{7}x=\frac{2}{7}\Leftrightarrow x=2\)
+)\(-\frac{1}{5}x+\frac{3}{5}=0\Leftrightarrow-\frac{1}{5}x=-\frac{3}{5}\Leftrightarrow x=3\)
+)\(\frac{1}{3}x+\frac{4}{3}=0\Leftrightarrow\frac{1}{3}x=-\frac{4}{3}\Leftrightarrow x=-4\)
c, \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{8}{9}\)
a/ \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Rightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Rightarrow x=11\)
b/ \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{1}{7}x=\frac{2}{7}\Rightarrow x=2\)
hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow-\frac{1}{5}x=-\frac{3}{5}\Rightarrow x=3\)
hoặc \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{1}{3}x=-\frac{4}{3}\Rightarrow x=-4\)
Vậy x = 2, x = 3, x = -4
c/ \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x=\frac{4}{9}\Rightarrow x=\frac{8}{9}\)
Vậy x = 8/9
\(Tìmx \)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
Ta có : \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
<=> \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x=-1\)
<=> \(\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)x=-1\)
<=> \(0.x=-1\)
=> x thuộc rỗng
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Leftrightarrow\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)x+1=0\)
\(\Leftrightarrow\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)x+1=0\)
\(\Leftrightarrow\frac{5+3-8}{30}x+1=0\)
\(\Leftrightarrow0x=-1\)(vô lí)
vậy không có giá trị nào của x thỏa mãn.
Tìm X biết:
a) \(\left(\frac{1}{7}.x-\frac{2}{7}\right).\left(-\frac{1}{5}.x+\frac{3}{5}\right).\left(\frac{1}{3}.x+\frac{4}{3}\right)=0\)
b)\(\frac{1}{6}.x+\frac{1}{10}.x-\frac{4}{15}.x+1=0\)
b, \(x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(0+1=0\)
=> x thuoc rong
tìm x
\(\frac{1}{6}.x+\frac{1}{10}-\frac{4}{15}.x+1=0\)
tìm x, y \(\in\)Z
\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
câu đầu nè e
x(1/6-4/15)+11/10 = 0
-x10. =-11/10
x=11
xy hình như là y/4 chứ nhỉ
\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{4}{y}\)
\(\Rightarrow\frac{5}{x}=\frac{y-32}{8y}\)
\(\text{ }\Rightarrow\orbr{\begin{cases}y-32=5\\x=8y\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=37\\x=8.y\end{cases}}\Rightarrow\orbr{\begin{cases}y=37\\x=8.37\end{cases}}\Rightarrow\orbr{\begin{cases}y=37\\x=296\end{cases}}\)
Tìm x, biết :
a. \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
b. \(|x.\left(x^2-\frac{5}{4}\right)|=x\)
\(a,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Leftrightarrow\left[\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right]x=-1\)
\(\Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)
\(b,\left|x\cdot\left[x^2-\frac{5}{4}\right]\right|=x\)
Vì vế trái \(\left|x\left[x^2-\frac{5}{4}\right]\right|\ge0\)với mọi x nên vế phải \(x\ge0\)
Ta có : \(x\left|x^2-\frac{5}{4}\right|=x\)vì \(x\ge0\)
Nếu x = 0 thì \(0\left|0^2-\frac{5}{4}\right|=0\)đúng
Nếu \(x\ne0\)thì ta có \(\left|x^2-\frac{5}{4}\right|=1\Leftrightarrow x^2-\frac{5}{4}=\pm1\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
a) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
=> \(\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)x+1=0\)
=> \(0x+1=0\)
=> \(1=0\)(vô lí)
b) |x . (x2 - 5/4)| = x
TH1: \(x.\left(x^2-\frac{5}{4}\right)=x\)
=> \(x^3-\frac{5}{4}x-x=0\)
=> \(x^3-\frac{9}{4}x=0\)
=> \(x\left(x^2-\frac{9}{4}\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x^2-\frac{9}{4}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^2=\left(\frac{3}{2}\right)^2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)
TH2: \(x\left(x^2-\frac{5}{4}\right)=-x\)
=> \(x^3-\frac{5}{4}x+x=0\)
=> \(x^3-\frac{1}{4}x=0\)
=> \(x\left(x^2-\frac{1}{4}\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^2=\left(\frac{1}{2}\right)^2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm\frac{1}{2}\end{cases}}\)
Do |x.(x2 - 5/4)| \(\ge\)0 => x\(\ge\)0 => x thuộc {0; 1/2; 3/2}
\(a,\text{ }\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(x\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)+1=0\)
\(x\cdot0=0-1\)
\(0x=-1\)
\(\Rightarrow\text{ }x\in\varnothing\)
\(b,\text{ }\left|x\cdot\left(x^2-\frac{5}{4}\right)\right|=x\)
Vì giá trị tuyệt đối của một số là một số không âm nên \(x\ge0\)
Ta có \(x\left(x^2-\frac{5}{4}\right)=\pm x\) \(^{\left(1\right)}\)
\(^{\text{*}}\text{ }x=0\) là một giá trị thỏa mãn \(^{\left(1\right)}\)
\(^{\text{*}}\)Nếu \(x=0\) thì \(^{\left(1\right)}\) \(\Leftrightarrow\text{ }x^2-\frac{5}{4}=1\pm\text{ }\Leftrightarrow\text{ }\orbr{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}\)
Vì có điều kiện \(x\ge0\) nên ta có đáp số \(x\in\left\{0\text{ ; }\frac{1}{2}\text{ ; }\frac{3}{2}\right\}\)