Bài 1 : x, y biết \(\frac{x}{2}=\frac{y}{3}\)
Và x2+y2 = 13
cho x và y là hai đại lượng tỉ lệ thuận : x1 và x2 là 2 giá trị khác nhau của x ; y1 và y2 là 2 giá trị tương ứng của y .
a) Tính x1 biết x2 = 2 ; y1 = \(\frac{-3}{4}\)và y2 = \(\frac{1}{7}\)
b) Tính x1 , y1 biết rằng : y1- x1 = -2 ; x2= -4 ; y2 = 3
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
Bạn Đinh Thị Khánh Linh làm đúng rồi mik làm theo cách bài ấy nhé
À mik quên bạn ất làm sai rồi nhé
Coppy trên hoc.vn24
a) X và y là hai đại lượng tỉ lệ thuận nên ta có công thức:
X1/x2=y1/y2 do đó:
X1.y2=x2.y1
=>x1.(-2)=5.(-3)
=>x1.(-2)=-15
=>x1=-15:(-2)
=>x1=7,5
Vậy x1=7,5
Hãy xem cách giải của mình có đúng không nha :
Cho x,y là 2đại lượng tỉ lệ thuận. Biết rằng x1+x2=1, y1-y2=-3.Tìm công thức liên hệ y đối với x.
Giải :
Ta có : y=kx \(\Rightarrow\)\(y=\frac{k}{x}\)\(\Rightarrow\)\(\frac{y1}{x1}=\frac{y2}{x2}=k\)
Thay y1-y2=-3;x1+x2=1 vào biểu thức,ta được:
k =\(\frac{y1-y2}{x1-x2}=\frac{-3}{1}=-3\)
Cho đáp số và phần sửa chữa chỗ sai trước 9 giờ
bài 1 : Cho biết x và y là hai đại lượng tỉ lệ thuận theo hệ số là k biết khi x = 3 và y = 12
a) tính k
b) viết công thức x theo y và y theo x
c) tính x biết y = 24
d) tính y biết x = 6
a) tính x1 , biết y1 = -3 ; y2 = -2 ; x2 = 5
b) tính x2 , y2 biết x2 +y2 = 10 ; x1 = 2 ; y1 = 3
aTìm x,y,z biết:
\(\frac{x-1}{2}\)= \(\frac{y-2}{3}\)= \(\frac{z-3}{4}\) và 2x+3y-z= 50
b. Cho x, y là 2 đại lượng tỉ lệ thuật x1,x2 là 2 giá trị khác nhau của x. y1, y2 là 2 giá trị tương ứng của y.
- tính x1 biết x2=2, y1= \(\frac{-3}{4}\), y2=\(\frac{1}{7}\)
- x1,y1 biết y1-x1=-2 , x2=-4 ,y2=3
c. cho chu vi một hình tam giác là 60 cm. các đường cao của tam giác có độ dài lần lượt là 12 cm, 15cm, 20cm. tính độ dài mỗi cạnh của tam giác đó.
nhanh hộ mình nhé. mình cảm ơn nhìu......
a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé
Bài 2
a) Tìm x biết\(\frac{1}{2}-\left|\frac{5}{4}-2x\right|=\frac{1}{3}\)
b) Tìm x biết \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c) Tìm ba số x, y, z thỏa mãn: \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)và \(x-y+z=78\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
c) \(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{x}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\). Mà \(x-y+z=78\). Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60;y=6.9=54;z=6.12=72\)
Vậy..........
1. Giả sử x và y là 2 đại lượng tỉ lệ thuận, x1, x2 là 2 giá trị khác nhau của x; y1, y2 là 2 giá trị tương ứng của y.
b) Tìm x1, y1 biết 2y1 + 3x1 = 20 ; x2 = -6; y2 = 3
2. Biết x,y là 2 đại lượng tỉ lệ thuận x1, x2 là 2 giá trị khác nhau của x; y1, y2 là 2 giá trị tương ứng của y.
a) Tính x1 biết x2= 3, y1= \(\frac{-3}{5}\) , y2= \(\frac{1}{9}\)
b) Tìm x1, y1 biết 2y1 + 3x1 = 20 ; x2 = -6 , y2 = 3
Mk gửi câu này lần thứ 2 rồi, mn giúp mk nhanh nhanh nha!!!
Bài 1:
Tổng số học sinh của 3 lớp: 7A, 7B ,7C là 408 học sinh. Biết số học sinh lớp 7A, 7B tỉ lệ với 20 và 21; số học sinh lớp 7B và 7C tỉ lệ với 7 và 9. Tính số học sinh lớp 7B
Bài 2:
Tìm giá trị nhỏ nhất của biểu thức: P =\(\left(|x-3|+2\right)^2+|y+3|+2007\)
Bài 3:
x và y là 2 đại lượng tỉ lệ nghịch. Biết x1,x2 là các giá trị tương ứng của x. y1, y2 là các giá trị tương ứng của y. Biết, x2 = 2; 2x1 - 3y2 = 22 ; y1 = 5. Tìm giá trị x1 + y2
Bài 4:
Tìm số các giá trị nguyên n. Biết \(-1\le\frac{n}{4}\le\frac{1}{2}\)
Giải chi tiết nha!
Bài 1 (1 ĐIỂM) Cho biết x và y là hai đại lượng tỉ lệ thuận, x1 và x2 là hai giá trị khác nhau của x, y1 và y2 là hai giá trị tương ứng của y. a) Tính x1, biết y1 = -3, y2 = -2, x2 = 5 b) Tính x2, y2 biết x2 + y2 = 10, x1 = 2, y1 = 3.
Bài 2 (1 ĐIỂM) Biết 4m dây thép nặng 100g. Hỏi 500m dây thép như thế nặng bao nhiêu kg?
giúp mik vs
Bài 1 ) a,y2=kx2⇒−2=5k⇒k=−25a,y2=kx2⇒−2=5k⇒k=−25 (k là hệ số tỉ lệ)
⇒y1=−25x1=−3⇒x1=152⇒y1=−25x1=−3⇒x1=152
b,y1=kx1⇒k=32⇒y2=32x2⇒x2+32x2=10⇒52x2=10⇒x2=4⇒y2=32⋅4=6
Bài 2 gọi khối lượng là x
Có khối lương tỉ lệ thuận với độ dài =) x=k.4m
=) 100g=k.4m =) k=25
Có khối lương tỉ lệ thuận với độ dài =) x=k.500m
=)x=25.500 ( vì k=25 )
=) x=12500g=12,5 kg
HT
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
1. Giả sử x và y là 2 đại lượng tỉ lệ thuận, x1, x2 là 2 giá trị khác nhau của x; y1, y2 là 2 giá trị tương ứng của y.
b) Tìm x1, y1 biết 2y1 + 3x1 = 20 ; x2 = -6; y2 = 3
2. Biết x,y là 2 đại lượng tỉ lệ thuận x1, x2 là 2 giá trị khác nhau của x; y1, y2 là 2 giá trị tương ứng của y.
a) Tính x1 biết x2= 3, y1= \(\frac{-3}{5}\), y2= \(\frac{1}{9}\)
b) Tìm x1, y1 biết 2y1 + 3x1 = 20 ; x2 = -6 , y2 = 3
~~~~GIÚP MK VỚI MN ƠI, NGÀY MAI MK PHẢI NỘP BÀI RỒI !!!~~~~ CẢM ƠN MN NHIỀU~~~~~