Những câu hỏi liên quan
PB
Xem chi tiết
CT
3 tháng 3 2019 lúc 2:26

  2 x 2 + 10 - 1 = 2 x 2 + 5 x - 1 / 2 B = 2 x 2 + 2 . 5 / 2   x   + 5 / 2 2 - 5 / 2 2 - 1 / 2 = 2 x + 5 / 2 2 - 25 / 4 - 2 / 4 = 2 x + 5 / 2 2 - 27 / 2 = 2 x + 5 / 2 2 - 27 / 2 V ì   x + 5 / 2 2   ≥   0   n ê n   2 x + 5 / 2 2   ≥   0   ⇒ 2   x + 5 / 2 2 - 27 / 2 ≥ - 27 / 2

Suy ra: B ≥ - 27/2 .

B= -27/2 khi và chỉ khi x + 5/2 = 0 suy ra x = -5/2

Vậy B = -27/2 là giá trị nhỏ nhất tại x = - 5/2

Bình luận (0)
H24
Xem chi tiết
AH
3 tháng 2 2024 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Bình luận (0)
AH
3 tháng 2 2024 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Bình luận (0)
AH
3 tháng 2 2024 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Bình luận (0)
BP
Xem chi tiết
LH
3 tháng 6 2021 lúc 21:32

\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)

=> A và B nằm cùng phía so với d

a)Lấy B' đối xứng với B qua d

=> d là trung trực của BB'

Có \(MA+MB=MA+MB'\)

Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương

\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)

\(\Rightarrow BB':2x+y-9=0\)

Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)

F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)

\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)

\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)

<=>\(t=\dfrac{19}{8}\)

Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

Bình luận (0)
LH
3 tháng 6 2021 lúc 21:43

b) Có \(MA-MB\le AB\)

\(\Leftrightarrow\left|MA-MB\right|\le AB\)

\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp

\(M\in\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\)\(\overrightarrow{AB}\left(2;-1\right)\)

\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)

\(\Leftrightarrow t=\dfrac{7}{2}\)

\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 7 2018 lúc 10:20

A =  2 x 2 - 8 x - 10

= 2 x 2 - 4 x + 4 - 18 = 2 x - 2 2 - 18

Do 2 x - 2 2  ≥ 0 với mọi x ⇒ 2 x - 2 2  – 18 ≥ −18

A = -18 khi và chỉ khi x - 2 = 0 hay x = 2

Do đó giá trị nhỏ nhất của biểu thức A bằng -18 tại x = 2

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 5 2019 lúc 15:18

Đáp án B

Bình luận (0)
DA
Xem chi tiết
NT
2 tháng 7 2023 lúc 7:50

B=|3-x|+|x+4|>=|3-x+x+4|=7

Dấu = xảy ra khi -4<=x<=3

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2019 lúc 3:52

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 8 2017 lúc 17:57


Chọn B

Bình luận (0)