Cho a,b là các số nguyên. CMR \(a^3+b^3\)chia hết cho 3 khi và chỉ khi a+b chia hết cho 3
Cho a,b,c là các số nguyên. CMR: a) a mũ 3 -a chia hết cho 6
b) a mũ 3+b mũ 3+c mũ 3 chia hết cho 6 khi và chỉ khi a+b+c chia hết cho 6
Mình cần gấp,mình đang học đến bài phân tích đa thức thành nt
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
cho a, b là các số nguyên. chứng minh rằng a^3+b^3 chia hết cho 3 khi và chỉ khi a +b chia hết cho 3
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
mà \(a^3+b^3⋮3\)
và \(3ab\left(a+b\right)⋮3\)
nên \(a+b⋮3\)
Giúp mình với!
Cho a, b là các số nguyên. chứng minh rằng a^3 + b^3 chia hết cho 3 khi và chỉ khi a + b chia hết cho 3.
Xét hiệu a3 + b3 - ( a + b ) ta có :
a3 + b3 - ( a + b ) = a3 + b3 - a - b = ( a3 - a ) + ( b3 - b ) = a( a2 - 1 ) + b( b2 - 1 ) = a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 )
Vì a,b nguyên nên a , a - 1 , a + 1 và b , b - 1 , b + 1 là 3 số nguyên liên tiếp
=> a( a - 1 )( a + 1 ) ⋮ 3 và b( b - 1 )( b + 1 ) ⋮ 3
=> a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 ) ⋮ 3 hay a3 + b3 - ( a + b ) ⋮ 3
mà a + b ⋮ 3 => a3 + b3 ⋮ 3 ( đpcm )
Cho a b c là các số nguyên
chứng minh a^3+b^3+c^3 chia hết 3 khi và chỉ khi a+b+c chia hết cho 3
Cho a, b, c là các số nguyên. Chứng minh rằng: \(a^3+b^3+c^3\)chia hết cho 3 khi và chỉ khi a+b+c chia hết cho 3
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3⇒a+b+c⋮3
làm như vậy nha, mk xin lỗi , ko bt cách viết số mũ nha, k nha
Xét \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[a^2+2ab+b^2-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
- Nếu \(a+b+c⋮3\)\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\)
Mà 3abc chia hết cho 3 \(\Rightarrow a^3+b^3+c^3⋮3\)
- Nếu \(a^3+b^3+c^3⋮3\)mà \(3abc⋮3\Rightarrow a^3+b^3+c^3-3abc⋮3\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\Rightarrow a+b+c⋮3\)
Chúc bạn học tốt.
Nhanh hơn là:
a3-a=a(a-1)(a+1) chia hết cho 3
CMTT: b3-b chia hết cho 3
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
1) Số cần tìm là: 3
2) 2354 X 9 = 21186
3) ( "b" ở đâu ra vậy bạn ? )
4) Đăt S = 3^(n+2) - 2^(n+2) + 3^n - 2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
=> S chia hết cho 10.
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10