Những câu hỏi liên quan
4C
Xem chi tiết
LA
Xem chi tiết
NL
2 tháng 1 2024 lúc 20:53

\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)

Bình luận (0)
H24
2 tháng 1 2024 lúc 20:54

\(P=16x^2+8x+2\)

\(=\left(16x^2+8x+1\right)+1\)

\(=\left[\left(4x\right)^2+2\cdot4x\cdot1+1^2\right]+1\)

\(=\left(4x+1\right)^2+1\)

Ta thấy: \(\left(4x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow P=\left(4x+1\right)^2+1\ge1>0\forall x\)

hay \(P\) luôn dương với mọi \(x\).

Bình luận (0)
BS
Xem chi tiết
H24
13 tháng 8 2016 lúc 13:32

b)x^4+5x^2-6

=x4-x3+x3-x2+6x2-6x+6x-6

=x3(x-1)+x2(x-1)+6x(x-1)+6(x-1)

=(x-1)(x3+x2+6x+6)

=(x-1)[x2(x+1)+6(x+1)]

=(x-1)(x+1)(x2+6)

Bình luận (0)
NA
Xem chi tiết
TL
Xem chi tiết
DT
19 tháng 8 2019 lúc 16:57

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

Bình luận (0)
DT
19 tháng 8 2019 lúc 17:02

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)

Bình luận (0)
LH
Xem chi tiết
NI
7 tháng 8 2021 lúc 10:25

\(A\left(x\right)=43x-\left(52x^2+34x^2-8x^4\right)-\left(8x^4+16x^3-42x^2+43x\right)+19\)

\(\Leftrightarrow A\left(x\right)=43x-86x^2+8x^4-16x^3+42x^2-43x+19\)

\(\Leftrightarrow A\left(x\right)=-16x^3-44x^2+19\)

Bậc là: 3

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
LD
11 tháng 9 2020 lúc 22:23

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
XO
11 tháng 9 2020 lúc 22:25

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
31 tháng 3 2019 lúc 15:02

a,đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x

ta có 2x^2 luôn dương

25 là số dương

Th1:8x là số âm

Suy ra f(x)2x^2-(-8x)+25(dpcm)

Th2:8x là số dương

Vì 2x^x\(\ge\)8x suy ra 2x^2-8x\(\ge\)0

Ko chắc vì làm theo suy nghĩ của t :V

Bình luận (0)
H24
31 tháng 3 2019 lúc 15:50

cho mk sửa lại:

\(f\left(x\right)=2x^2-8x+25=2.\left(x^2-4x+4\right)+17=2.\left(x-2\right)^2+17>0\forall x\)

\(g\left(x\right)=-x^2+7x-43=-\left(x^2-7x+43\right)=-\left(x^2-7x+\frac{49}{4}-\frac{49}{4}+43\right)\)

\(=-\left(x-\frac{7}{2}\right)^2-\frac{123}{4}< 0\forall x\)

Vậy....

Bình luận (0)
TH
Xem chi tiết