Những câu hỏi liên quan
TH
Xem chi tiết
H24

1,

Đặt A = n3 - n2 + n - 1

Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)

Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :

TH1 : n - 1 = 1 và n2 + 1 nguyên tố 

n = 2 và n2 + 1 = 5 nguyên tố (thỏa)

TH2 : n2 + 1 = 1 và n - 1 nguyên tố 

n = 0 và n - 1 = - 1( ko thỏa)

Vậy n = 2

Bình luận (0)
 Khách vãng lai đã xóa
H24

2 , 

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

Bình luận (0)
 Khách vãng lai đã xóa
H24

3 , 

Giải:

Với m=2 thì m2+2=4+2= 6 là hợp số (loại)

Với m=3 thì m2+2 = 9+2= 11 (thoải mãn)

Với m= 3k+1 ( với k ẻ N) thì: m2+2 = (3k+1)2 +2 = 3(3k2+2k+1) là hợp số ( loại)

Với m= 3k+2 thì: m2+2= (3k+2)2 +2 = 3(3k2+4k+2) là hợp số (loại)

Vậy với m= 3 thì m và m2+2 là số nguyên tố. Khi đó m3+ 2= 33+2 = 29 là số nguyên tố.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
19 tháng 4 2016 lúc 20:58

Xét n chẵn thì n^3+n+2 xẽ là số chẵn mà n thuộc vào N* nên n>0  =>n^3+n+2 >2 nên n^3+n+2 là hợp số.

Xét n lẻ thì n^3 là lẻ nên n^3+n là số chẵn => n^3+n+2 chẵn. Chứng minh như trên.

Có thể bạn ko cần phải chứng minh n^3+n là chẵn trong trường hợp trên nhưng chứng minh thì cũng ko thừa đâu.

Bình luận (0)
NL
Xem chi tiết
NK
18 tháng 11 2015 lúc 23:31

Theo bài ra, ta có:

n3 + n + 2

= n(n2 + n) + 2.

+ Nếu n lẻ => n2 lẻ => n2 + n chẵn => n2 + n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2

Mà n(n2 + 2) + 2 lớn hơn 2 => n(n2 +n) + 2 là hợp số hay n3 + n + 2 là hợp số.

+ Nếu n chẵn => n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2.

Mà n(n2 + n) + 2 lớn hớn 2 => n(n2 + n) + 2 là hợp số hay n3 + n + 2 là hợp số.

Vậy n3 + n + 2 là hợp số với moi n thuộc N*

Bình luận (0)
NN
14 tháng 9 2016 lúc 20:44

Cậu trên giải sai rồi, n3 +n + 2= n( n2 +1) +2 chứ sao bằng giống bạn trên được, nếu giống bạn trên thì n( n2 +n) +2 = n3 + n2 +2 rồi

Bình luận (0)
NK
18 tháng 11 2015 lúc 23:00

Dễ, đây mà là bài lớp 8, bài lớp 6 thì có.

Bình luận (0)
NL
Xem chi tiết
SG
15 tháng 11 2016 lúc 22:15

n3 + n + 2

= n3 - n + 2n + 2

= n.(n2 - 1) + 2.(n + 1)

= n.(n - 1).(n + 1) + 2.(n + 1)

= (n + 1).(n2 - n + 2), có ít nhất 3 ước khác 1

=> n3 + n + 2 là hợp số với mọi n ϵ N* (đpcm)

Bình luận (0)
ND
15 tháng 11 2016 lúc 22:14

Có: n3 + n + 2 = n(n2+1) + 2

- Nếu n lẻ => n2 lẻ => n2 + 1 chẵn => n2 + 1 chia hết cho 2 => n(n2+1) chia hết cho 2

Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (1)

- Nếu n chẵn => n(n2+1) chia hết cho 2 => n(n2+1) + 2 chia hết cho 2

Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (2)

Từ (1) và (2) => n3 + n + 3 là hợp số với mọi n \(\in\) N*

Bình luận (2)
RN
Xem chi tiết
AN
15 tháng 11 2016 lúc 22:27

Ta có

n3 + n + 2 = (n + 1)(n2 - n + 2)

Ta thấy ( n + 1) > 1

n2 - n + 2 > 1

Vậy n3 + n + 2 luôn chia hết cho 2 số khác 1 nên nó là hợp số

Bình luận (0)
HT
Xem chi tiết
HP
22 tháng 8 2021 lúc 16:52

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

Bình luận (0)
NC
22 tháng 8 2021 lúc 16:57

 n3−n⋮3∀n∈Z

Bình luận (0)
LL
22 tháng 8 2021 lúc 17:07

a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3

b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\) 

Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)

Bình luận (0)
CM
Xem chi tiết
CM
Xem chi tiết
BN
21 tháng 1 2016 lúc 23:08

vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8

mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6

vậy 8(m-1)m(m+1) chia hết cho 48

Bình luận (0)
VT
Xem chi tiết
ZZ
11 tháng 2 2019 lúc 20:37

cái này lớp 6 cũng làm dc mak bạn.

Với n là số chẵn nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0

Với n là số lẻ nên \(n^3\) là số lẻ nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0

Vậy với mọi n là số tự nhiên khác 0 thì \(n^3+n+2\) là hợp số 

Bình luận (0)
ST
12 tháng 2 2019 lúc 13:13

\(n^3+n+2=n^3-n+2n+2=n\left(n-1\right)\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n^2-n+2\right)\)

Vì n thuộc N* nên n+1 > 1, n2-n+2 > 1 => dpdcm

Bình luận (0)