Phân tích thành nhân tử
a) 4x mũ 2 - y mũ 2 + 4x +1
b) x mũ 3 - x + y mũ 3 - y
bài 2; phân tích các đa thức sau thành nhân tử
a, x mũ 2 + 4x - y mũ 2 + 4
b, 25 - 4x mũ 2 - 4xy - y mũ 2
c, x mũ 3 - x + y mũ 3 - y
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
phân tích đa thức sau thành nhân tử
6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2
10, 4x mũ 2 ( x + y ) -x - y
6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x =x (x+2) (x^2-6x+4)
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2 = -(y-x^2-x) (y+x^2+x)
10, 4x mũ 2 ( x + y ) -x - y = (2x-1) (2x+1) (y+x)
phân tích đa thức sau thành nhân tử
f , x mũ 3 - 4x mũ 2 - 9x + 36
g, 4x - 4y + x mũ 2 - 2xy + y mũ 2
h, x mũ 4 + x mũ 3 + x mũ 2 - 1
i, x mũ 2 - y mũ 2 - 4x - 4y
j, x mũ 3 - y mũ 3 - 3x + 3y
f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )
g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )
h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )
j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
Trả lời:
f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )
g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )
h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) = x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )
j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
f) x3-4x2-9x+36
=x2(x-4)-9(x-4)
=(x-4)(x2-9)
=(x-4)(x-3)(x+3)
g) 4x-4y+x2-2xy+y2
=4(x-y)+(x-y)2
=(x-y)(4+x-y)
h) x4+x3+x2-1
=x3(x+1)+(x-1)(x+1)
=(x+1)(x3+x-1)
i) x2-y2-4x-4y
=(x-y)(x+y)-4(x+y)
=(x+y)(x-y-4)
j) x3-y3-3x+3y
=(x-y)(x2+xy+y2)-3(x-y)
=(x-y)(x2+xy+y2-3)
#H
phân tích đa thức sau thành nhân tử
s, x mũ 2 - 4x mũ 2 y mũ 2 + y mũ 2 - 2xy
u, 4x + 4y - x mũ 2( x - y )
s) = ( x2 - 2xy + y2 ) - ( 2xy )2 = ( x - y - 2xy )( x - y + 2xy )
u) sửa +4y thành -4y
= 4( x - y ) - x2( x - y ) = ( x - y )( 2 - x )( 2 + x )
Trả lời:
s, x2 - 4x2y2 + y2 - 2xy
= ( x2 - 2xy + y2 ) - 4x2y2
= ( x - y )2 - ( 2xy )2
= ( x - y - 2xy )( x - y + 2xy )
u, sửa đề: 4x - 4y - x2 ( x - y )
= 4 ( x - y ) - x2 ( x - y )
= ( x - y ) ( 4 - x2 )
= ( x - y )( 2 - x )( 2 + x )
phân tích đa thức sau thành nhân tử
t, x mũ 2 y - xy mũ 2 + x mũ 3 - y mũ 3
o, 4x mũ 2 - 25 + ( 2x + 7 )( 5 - 2x )
p, 5x mũ 2 - 5y mũ 2 - 10x + 10y
r, x mũ 2 - xy + 4x - 2y + 4
a)x²−2x−4y²−4ya)x²-2x-4y²-4y
=x²−2x−4y²−4y+2xy−2xy=x²-2x-4y²-4y+2xy-2xy
=(x²−2xy−2x)+(2xy−4y²−4y)=(x²-2xy-2x)+(2xy-4y²-4y)
=x(x−2y−2)+2y(x−2y−2)=x(x-2y-2)+2y(x-2y-2)
=(x+2y)(x−2y−2)=(x+2y)(x-2y-2)
b)x4+2x³−4x−4b)x4+2x³-4x-4
=x4+2x³+2x²−2x²−4x−4=x4+2x³+2x²-2x²-4x-4
=(x4+2x³+2x²)−(2x²+4x+4)=(x4+2x³+2x²)-(2x²+4x+4)
=x²(x²+2x+2)−2(x²+2x+2)=x²(x²+2x+2)-2(x²+2x+2)
=(x²−2)(x²+2x+2)=(x²-2)(x²+2x+2)
c)x³+2x²y−x−2yc)x³+2x²y-x-2y
=x²(x+2y)−(x+2y)=x²(x+2y)-(x+2y)
=(x²−1)(x+2y)=(x²-1)(x+2y)
=(x+1)(x−1)(x+2y)=(x+1)(x-1)(x+2y)
d)3x²−3y²−2(x−y)²d)3x²-3y²-2(x-y)²
=3(x²−y²)−2(x−y)²=3(x²-y²)-2(x-y)²
=3(x+y)(x−y)−2(x−y)²=3(x+y)(x-y)-2(x-y)²
=(x−y)[3(x+y)−2(x−y)]=(x-y)[3(x+y)-2(x-y)]
=(x−y)(3x+3y−2x+2y)=(x-y)(3x+3y-2x+2y)
=(x−y)(x+5y)=(x-y)(x+5y)
e)x³−4x²−9x+36e)x³-4x²-9x+36
=(x³−4x²)−(9x−36)=(x³-4x²)-(9x-36)
=x²(x−4)−9(x−4)=x²(x-4)-9(x-4)
=(x−4)(x²−9)=(x-4)(x²-9)
=(x−4)(x²−3²)=(x-4)(x²-3²)
=(x−4)(x+3)(x−3)=(x-4)(x+3)(x-3)
f)x²−y²−2x−2yf)x²-y²-2x-2y
=(x²−y²)−(2x+2y)=(x²-y²)-(2x+2y)
=(x+y)(x−y)−2(x+y)=(x+y)(x-y)-2(x+y)
=(x+y)(x−y−2)
hok tốt nhé
k đi
phân tích đa thức sau thành nhân tử
1, x mũ 2 - y mũ 2 + 4x + 4
2, x mũ 2 + 2x - 4y mũ 2 - 4y
3, 3x mũ 2 - 4y + 4x - 3y mũ 2
4, x mũ 4 - 6x mũ 3 + 54x - 81
bài 1; phân tích các đa thức sau thành nhân tử
6, x mũ 2 y + xy mũ 2 - 4x - 4y
7, 10ax - 5ay - 2x + y
8, x mũ 3 - 2x mũ 2 + 2a - 4
9, 4x mũ 2 - y mũ 2 + 8y - 16
6, \(x^2y+xy^2-4x-4y=xy\left(x+y\right)-4\left(x+y\right)=\left(xy-4\right)\left(x+y\right)\)
7, \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(2x-y\right)\)
8, xem lại đề bạn nhé
9, \(4x^2-y^2+8y-16=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)
\(=\left(2x-y+4\right)\left(2x+y-4\right)\)
Trả lời:
6, x2y + xy2 - 4x - 4y = ( x2y + xy2 ) - ( 4x + 4y ) = xy ( x + y ) - 4 ( x + y ) = ( x + y )( xy - 4 )
7, 10ax - 5ay - 2x + y = ( 10ax - 5ay ) - ( 2x - y ) = 5a ( 2x - y ) - ( 2x - y ) = ( 2x - y )( 5a - 1 )
8, Sửa đề: x3 - 2x2 + 2x - 4 = ( x3 - 2x2 ) + ( 2x - 4 ) = x2 ( x - 2 ) + 2 ( x - 2 ) = ( x - 2 )( x2 + 2 )
9, 4x2 - y2 + 8y - 16 = 4x2 - ( y2 - 8y + 16 ) = 4x2 - ( y - 4 )2 = ( 2x - y + 4 )( 2x + y - 4 )
bài 2; phân tích các đa thức sau thành nhân tử
1, x mũ 2 - y mũ 2+ 4x 4
2, x mũ 2 + 2x - 4y mũ 2 - 4y
3, 3x mũ 2 - 4y + 4x - 3y mũ 2
4, x mũ 4 - 6x mũ 3 + 54x - 81
\(1,x^2-y^2+4x-4y\)
\(\left(x-y\right)\left(x+y\right)+4\left(x-y\right)\)
\(\left(x-y\right)\left(x+y+4\right)\)
\(x^2+2x-4y^2-4y\)
\(\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)\)
\(\left(x-2y\right)\left(x+2y+2\right)\)
\(3,3x^2-4y+4x-3y^2\)
\(3\left(x^2-y^2\right)-4\left(x-y\right)\)
\(3\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(\left(x-y\right)\left(3x+3y-4\right)\)
\(x^4-6x^3+54x-81\)
\(x^4+3x^3-9x^3+27x^2-27x^2+81x-27x-81\)
\(\left(x^4+3x^3\right)-\left(9x^3+27x^2\right)+\left(27x^2+81x\right)-\left(27x+81\right)\)
\(x^3\left(x+3\right)-9x^2\left(x+3\right)+27x\left(x+3\right)-27\left(x+3\right)\)
\(\left(x+3\right)\left(x^3-9x^2+27x-27\right)\)
\(\left(x+3\right)\left(x-3\right)^3\)
bài 2; phân tích đa thức sau thành nhân tử
1, a mũ 2 - 2a + 1 - b mũ 2
2, x mũ 2 + 2xy + y mũ 2 - 81
3, x mũ 2 + 6y - 9 - y mũ 2
4, 9y mũ 2 - 6y + 1 - 25x mũ 2
5, 4x mũ 2 + y mũ 2 - 9 - 4xy
\(1,a^2-2a+1-b^2\)
\(=\left(a^2-2a+1\right)-b^2\)
\(=\left(a-1\right)^2-b^2\)
\(=\left(a-1-b\right)\left(a-1+b\right)\) Khai triển thành hằng đẳng thức số 3 e nhé.
\(2,x^2+2xy+y^2-81\)
\(=\left(x^2+2xy+y^2\right)-81\)
\(=\left(x+y\right)^2-9^2\)
\(=\left(x+y-9\right)\left(x+y+9\right)\)Cái này cũng HĐT số 3 nè
\(3,x^2+6y-9-y^2\)
\(=-\left(y^2-6y+9\right)+x^2\)
\(=-\left(y-3\right)^2+x^2\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
\(5,4x^2+y^2-9-4xy\)
\(=\left(4x^2-4xy+y^2\right)-9\)
\(=\left(2x-y\right)^2-3^2\)
\(=\left(2x-y-3\right)\left(2x-y+3\right)\)
Học tốt