Những câu hỏi liên quan
LC
Xem chi tiết
ZZ
8 tháng 1 2020 lúc 21:49

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
DH
8 tháng 2 2020 lúc 14:15

\(\Leftrightarrow\left(a+b\right)\left(\frac{a+b}{2}+\frac{1}{4}\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\ge0\left(1\right)\)

Áp dụng BĐT Cô-si cho 2 số dương ta được:

\(VT\left(1\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)\ge\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{a}-\frac{1}{2}\right)^2\right]\ge0\)

\(\Rightarrow\left(1\right)\) Đúng.

\(\RightarrowĐpcm\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
PA
28 tháng 7 2020 lúc 20:23

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
2U
28 tháng 7 2020 lúc 20:26

Mai Anh ! cậu giỏi quá, cậu nè :33 

Bình luận (0)
 Khách vãng lai đã xóa
CN
28 tháng 7 2020 lúc 20:29

Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây

Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm

Copy always mà vẫn 50k giải tuần đấy, ghê=))

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
H24
8 tháng 8 2019 lúc 18:31

toán lớp 1 ??? giỡn quài , phi logic :3

Bình luận (0)
UI
8 tháng 8 2019 lúc 22:06

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

Bình luận (0)
PQ
9 tháng 8 2019 lúc 10:46

Dấu "=" xảy ra khi a=b=0 hoặc a=b=4, vẫn xét dấu "=" được nhé Đinh Nhật Minh 

Bình luận (0)
NA
Xem chi tiết
BH
Xem chi tiết
BH
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
H24
14 tháng 12 2020 lúc 22:07

Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)

Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)

Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)

Bình luận (0)
 Khách vãng lai đã xóa