Những câu hỏi liên quan
MM
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
DP
Xem chi tiết
PL
3 tháng 7 2019 lúc 21:19

\(\frac{x+\sqrt{xy}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)^2}{x-y}\)

Bình luận (0)
FT
Xem chi tiết
DM
22 tháng 11 2017 lúc 20:18

đề sai rùi

Bình luận (0)
AN
23 tháng 11 2017 lúc 8:48

\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)

Điều kiện: \(x,y\ge0\)

Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ

Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)

Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)

\(\Leftrightarrow x=y\)

Thế vô (1) ta được:

\(2x^{2017}=1\)

\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)

Bình luận (0)
VV
23 tháng 11 2017 lúc 12:29

alibaba Nguyễn làm đúng rùi

Bình luận (0)
NK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
2T
17 tháng 8 2019 lúc 14:28

a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)

b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

Bình luận (0)