Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NB
Xem chi tiết
BH
21 tháng 6 2018 lúc 8:02

mik ko biết

Bình luận (0)
ST
21 tháng 6 2018 lúc 10:52

Ta có: a3+b3+c3=3abc

<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0

<=> (a+b+c)(2a2+2b2+2c2-2ab-2bc-2ca)=0

<=> (a+b+c)[(a-b)2+(b-c)2+(c-a)2 ] = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Vì a,b,c phân biệt nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)(*)

Lại có: \(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)

Thay (*) vào M ta được:

\(M=\frac{-\left(b+c\right)b^2}{\left(b+c\right)^2+\left(b+c\right)\left(b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)^2+\left(c+a\right)\left(c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)}\)

\(=\frac{-\left(b+c\right)b^2}{\left(b+c\right)\left(b+c+b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)\left(c+a+c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)\left(a+b+a-b\right)}\)

\(=\frac{-\left(b+c\right)b^2}{2b\left(b+c\right)}+\frac{-\left(c+a\right)c^2}{2c\left(c+a\right)}+\frac{-\left(a+b\right)a^2}{2a\left(a+b\right)}\)

\(=\frac{-b}{2}-\frac{c}{2}-\frac{a}{2}=\frac{-\left(b+c+a\right)}{2}\)

Mà a+b+c=0

=> M=0

Vậy M=0

Bình luận (0)
ST
22 tháng 6 2018 lúc 10:00

Sửa lại dòng (*)

Vì a,b,c phân nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\left(\text{*}\right)}\)

Bình luận (0)
HH
Xem chi tiết
H24
24 tháng 6 2023 lúc 21:23

ab2 hay là a2b2

Bình luận (1)
H24
24 tháng 6 2023 lúc 21:49

 

từ a^3 + b^3 + c^3 =3abc => a+b+c = 0 

=> a+b= -c  <=> c^2 = (a+b)^2 

tương tự với -b và -a 

=> P = ab^2/a^2+b^2-a^2-2ab-b^2 + bc^2/b^2+c^2-b^2-2bc-c^2 + ca^2/c^2 + a^2 - c^2-2ac-a^2

= -a/2 - b/2 - c/2 = -1/2(a+b+c)=0

 

Bình luận (0)
H24
Xem chi tiết
PN
7 tháng 12 2015 lúc 21:55

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Mà  \(a+b+c\ne0\left(gt\right)\)

\(\Leftrightarrow a=b=c\)

Do đó:

\(A=\frac{a^2+2b^2+6c^2}{\left(a+b+c\right)^2}+2015=\frac{a^2+2a^2+6c^2}{\left(a+a+a\right)^2}+2015=\frac{9a^2}{9a^2}+2015=1+2015=2016\)

Bình luận (0)
NT
Xem chi tiết
SN
9 tháng 7 2015 lúc 22:10

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

vậy \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=6\)

Bình luận (0)
H24
Xem chi tiết
H24
23 tháng 10 2016 lúc 21:22

Sưả câu 2. a2+b2+c2=3abc

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
IA
24 tháng 6 2021 lúc 21:26

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2bc-2ca=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

bạn thay vào M giải tiếp nha

Bình luận (0)
 Khách vãng lai đã xóa
ND
24 tháng 6 2021 lúc 21:30

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Nếu \(a^2+b^2+c^2-ab-bc-ca\)

\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\left(\forall a,b,c\right)\)

Dấu "=" xảy ra khi: a = b = c

Khi đó: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)^3=8\)

Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-abc}{abc}=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
24 tháng 6 2021 lúc 21:31

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

\(a+b+c=0\)

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

\(=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\).

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
HA
Xem chi tiết
NH
10 tháng 10 2016 lúc 22:18

giả sử :c^2>a^2>b^2 khi đó ta có :

\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)

Như vậy ta có :\(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a=b=c

                 chuc bn hk tốt!

Bình luận (0)