Những câu hỏi liên quan
NA
Xem chi tiết
H24
7 tháng 7 2023 lúc 9:52

\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{4^2-2.4.\sqrt{2}+\sqrt{2^2}}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\left|4-\sqrt{2}\right|}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left|\sqrt{3}-1\right|}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{3}-2}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=\sqrt{3^2}-1^2\\ =3-1\\ =2\)

Bình luận (0)
Xem chi tiết
H24
1 tháng 9 2019 lúc 8:41

๖ۣۜᏦᎧᎳ•Trần Hiến๖ۣۜᏟᏞυβ Căn bậc hai. Căn bậc ba

Bình luận (0)
H24
Xem chi tiết
TP
31 tháng 8 2019 lúc 18:18

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{3}+1}}\)

\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{2-\sqrt{3}}}\)

\(B=\sqrt{6+2\cdot\sqrt{4-2\sqrt{3}}}\)

\(B=\sqrt{6+2\cdot\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(B=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(B=\sqrt{4+2\sqrt{3}}\)

\(B=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(B=\sqrt{3}+1\)

Bình luận (0)
H24
31 tháng 8 2019 lúc 18:13

Hỏi đáp Toán

đây

Bình luận (0)
NH
Xem chi tiết
NM
Xem chi tiết
NC
25 tháng 9 2019 lúc 21:56

Tính máy tính đc ko bạn:))))

Bình luận (0)
LT
Xem chi tiết
AN
2 tháng 10 2016 lúc 14:31

Ta có \(\sqrt{18-\sqrt{128}}\)

\(\sqrt{18-8\sqrt{2}}\)

\(\sqrt{16-2×4×\sqrt{2}+2}\)

\(4-\sqrt{2}\)

Từ đó cái ban đầu

\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(\sqrt{6+2\sqrt{3}-2}\)

\(\sqrt{4+2\sqrt{3}}\)

\(\sqrt{3}+1\)

Bình luận (0)
NT
1 tháng 11 2017 lúc 13:57

\(\sqrt{3}-1\)

Bình luận (0)
TH
23 tháng 11 2017 lúc 20:34

\(\sqrt{3}\)-1

Bình luận (0)
CT
Xem chi tiết
NM
24 tháng 8 2017 lúc 8:39

\(B=\sqrt{18-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{12+5+1-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{12+1-4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{5}+1-2\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=2\sqrt{3}-1-\sqrt{5}-2\sqrt{3}+1=-\sqrt{5}\)

Bình luận (0)
B1
23 tháng 8 2017 lúc 21:42

Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp. 
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x 
Số ban đầu có dạng 10.3x + x = 31x 
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x 
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK) 
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31. 
2) Tóm tắt thôi nhé. 
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10 
Số mới sau khi đổi chỗ là 10b + a 
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36 
được a = 7; b = 3. Vậy số cần tìm là 73. 
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5 
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a 
=> 9a = 1782 => a = 198 => Số ban đầu là 1985

Bình luận (0)
CT
23 tháng 8 2017 lúc 21:44

mình có ghi lớp 9 mà

Bình luận (0)
DH
Xem chi tiết
TT
Xem chi tiết
H24
22 tháng 6 2017 lúc 15:19

\(A=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12+\sqrt{18}+\sqrt{128}}}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\left(3-\sqrt{\sqrt{2}+\sqrt{12+\sqrt{18}+\sqrt{128}}}\right)}}\)

\(=\sqrt{6+2\sqrt{2\left(3-\sqrt{\sqrt{2}+\sqrt{12+3\sqrt{2}+8\sqrt{2}}}\right)}}\)

\(=\sqrt{6+2\sqrt{2\left(3-\sqrt{\sqrt{2}+\sqrt{12+11\sqrt{2}}}\right)}}\)

\(=\sqrt{6+2\sqrt{6}-2\sqrt{\sqrt{2}+\sqrt{12+11\sqrt{2}}}}\)

Bình luận (1)