Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KL
Xem chi tiết
NT
28 tháng 7 2018 lúc 15:57

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

Bình luận (0)
OO
28 tháng 7 2018 lúc 15:57

tích mình đi

ai tích mình 

mình tích lại 

thanks

Bình luận (0)
DA
28 tháng 7 2018 lúc 15:59

hs minh

Bình luận (0)
TH
Xem chi tiết
MN
29 tháng 3 2020 lúc 14:28

Từ giải thiết, ta suy ra được những điều sau :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}-\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}\)

\(=\frac{x}{-x\left(y^2+y+1\right)}-\frac{y}{-y\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)      (1)

Và \(\left(x^2+x+1\right)\left(y^2+y+1\right)\) 

\(=x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1\)

\(=x^2y^2+\left(x^2+xy\left(x+y\right)+xy+y^2\right)+\left(x+y\right)+1\)

\(=x^2y^2+\left(x^2+2xy+y^2\right)+1+1\)

\(=x^2y^2+\left(x+y\right)^2+2\)

\(=x^2y^2+3\)   (2)

Từ (1) và (2) suy ra :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2-x-1+y^2+y+1+2x-2y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2+y^2+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{\left(x+y\right)\left(y-x\right)+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{y-x+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=0\)(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
TL
7 tháng 4 2020 lúc 6:09

Biến đổi

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(do x+y=1 => y-1=-x và x-1=-y)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^3+y^3\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

=> ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
NQ
Xem chi tiết
AN
4 tháng 7 2017 lúc 9:26

Hình như đề sai rồi

Bình luận (0)
NQ
4 tháng 7 2017 lúc 9:56

đúng đề mà bạn

Bình luận (0)
AN
4 tháng 7 2017 lúc 10:00

Vậy b nói xem thử khi nào nó = 4.

Bình luận (0)
LA
Xem chi tiết
H24
Xem chi tiết
PP
18 tháng 2 2022 lúc 15:45

lllllllllllllllllllllllllllllllllllllllllllllllllllllll

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 2 2022 lúc 17:30

mn giúp mình với

 

Bình luận (0)
PT
Xem chi tiết
PT
20 tháng 12 2021 lúc 19:32

Đề đây ạ:

Tìm các số nguyên x và y sao cho (x-3)(x+y)=7

Bình luận (0)
 Khách vãng lai đã xóa
HG
Xem chi tiết
LT
Xem chi tiết
HP
4 tháng 11 2015 lúc 20:20

đặt x/2=y/3=k

=>x=2k;y=3k

=>x^2.y^2=(x.y)^2=(2k.3k)^2=(6k^2)^2=36.k^4=576

=>k^4=16=>k=+2

mà x;y>0

=>k=2

=>x=2k =>x=4

y=3k=>y=6

vậy x=4;y=6

Bình luận (0)
H24
Xem chi tiết
NM
6 tháng 10 2021 lúc 10:08

Áp dụng BĐT cosi cho \(x,y>0\)

\(M=x+y+\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{x\cdot\dfrac{1}{x}}+2\sqrt{y\cdot\dfrac{1}{y}}=4\)

Dấu \("="\Leftrightarrow x=y=1\)

Mà \(x+y=2\le\dfrac{4}{3}\left(vô.lí\right)\) nên dấu \("="\) không xảy ra

Vậy M không có GTNN

Bình luận (0)