Tìm x
x^3+3x^2+1+28=0
B1 :
cho pt : ( (5x-a)/6 ) - 1 = (2x+a)/5 - a/10 - 7(5-x)/ 28
1. giải pt với ẩn là x
2. Tìm a để x= -1
3. Tìm giá trị nguyên của a để 0<x<10
B2:
1. cho a+b+c+d = 0, cmr : a^3 + b^3 + c^3 + d^3 = 3(ab-cd)(c+d)
2. phân tích đa thức thành nhân tử : Q= ( x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2
tìm x: [(3x^6)-(4x^3)]:x^3-(3x+1)^2:(3x+1)-3x^7:x^5=0
\(\dfrac{3x^6-4x^3}{x^3}-\dfrac{\left(3x+1\right)^2}{3x+1}-\dfrac{3x^7}{x^5}=0\)
\(\Leftrightarrow3x^3-4-3x-1-3x^2=0\)
\(\Leftrightarrow3x^3-3x^2-3x-5=0\)
\(\Leftrightarrow x\simeq1,9506\)
`4x=2+xx+1x<=>4x=2+3x<=>4x-3x=2<=>1x=2<=>x=2`
Tìm x thuoc z biet:
A) 3.(x+2)-6.(x-5)=2.(5-2x)
B) (-2x ). (4x) +28=100
C) 5x.x2+1=6
D) 3x2 +12x =0
E) 4x3 =4x
Giúp mik đi!
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a) \(7x^2=28\Leftrightarrow x^2=7\Leftrightarrow x=\sqrt{7}\)
c) \(\left(x-1\right)\left(x+\dfrac{5}{2}\right)=0\Leftrightarrow x\in\left\{1;\dfrac{-5}{2}\right\}\)
tìm x thỏa mãn: (2x - 1/2)(3x - 1/3)<0
cho A=\(\left(\frac{2}{x^2-3x}-\frac{1}{x-3}\right)\cdot\frac{x^2-6x+9}{x-2}\)
a,Rút gọn A
b,tìm x để A>0
c,khi x>0,x khác 3 hãy tìm MinP=A+3x
Tìm x
a, 2x.(x-3)+3(x-3)=0
b, x(3x-1)-5(1-3x)=0
a) \(2x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)