Những câu hỏi liên quan
H24
Xem chi tiết
PQ
19 tháng 9 2017 lúc 7:50

Đề có thiếu ko vậy bạn

Bình luận (0)
DA
19 tháng 9 2017 lúc 8:34

Tính nhanh:

2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3

Bình luận (0)
NH
Xem chi tiết
NQ
20 tháng 11 2015 lúc 12:47

câu hỏi tương tự

huhu

tick

tick

Bình luận (0)
BA
Xem chi tiết
NH
28 tháng 8 2015 lúc 21:35

Tính S = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)
Lời giải
Ta thấy: 1.4 = 1.(1 + 3)
2.5 = 2.(2 + 3) 
3.6 = 3.(3 + 3) 
4.7 = 4.(4 + 3)
…….
n(n + 3) = n(n + 1) + 2n
Vậy S = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n
= 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n
= [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)
3S = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) =
= 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n) =
= n(n + 1)(n + 2) +S

Bình luận (0)
VT
Xem chi tiết
AT
6 tháng 7 2019 lúc 10:07

I love you Thư 😘😘😘

Bình luận (0)
VT
6 tháng 7 2019 lúc 10:11

Love!!!

Bình luận (0)
NH
Xem chi tiết
SK
1 tháng 3 2016 lúc 10:02

em xin chịu

Bình luận (0)
KM
Xem chi tiết
HL
19 tháng 9 2017 lúc 9:25

\(S=1.4+2.5+3.6+4.7+...+n\left(n+3\right)\)

\(S=4+10+18+21+...+n\left(n+3\right)\)

S gồm có :

\(\dfrac{n\left(n+3\right)-4}{4}+1\) ( số hạng )

Tổng S là:

\(S=\left[n\left(n+3\right)+4\right].\left[\dfrac{n\left(n+3\right)-4}{4}+1\right]:2\)

\(S=\left(n^2+3n+4\right)\left[\dfrac{n^2+3n-4}{4}+1\right].\dfrac{1}{2}\)

\(S=\dfrac{n^2+3n+4}{2}.\dfrac{n^2+3n}{4}\)

Bình luận (1)
HK
20 tháng 9 2017 lúc 18:20

1 số hạng nha mình đang tìm cách giải thích

Bình luận (0)
YG
Xem chi tiết
H24
22 tháng 5 2021 lúc 17:37

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) 

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
22 tháng 5 2021 lúc 21:00

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) 

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
MH
20 tháng 9 2017 lúc 18:30

Ta thấy:

1.4 = 1.(1 + 3) = 1.(1 + 1 + 2) = 1.(1 + 1)+ 2.1

2.5 = 2.(2 + 3) = 2.(2 + 1 + 2) = 2.(2 + 1)+ 2.2

3.6 = 3.(3 + 3) = 3.(3 + 1 + 2) = 3.(3 + 1)+ 2.3

4.7 = 4.(4 + 3) = 4.(4 + 1 + 2) = 4.(4 + 1)+ 2.4

. . . . . . . . . . .

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + . . . + n(n + 1) + 2n

= 1.2 + 2 +2.3 + 4 + 3.4 + 6 + . . . + n(n + 1) + 2n

= [1.2 +2.3 +3.4 + . . . + n(n + 1)] + (2 + 4 + 6 + . . . + 2n)

Mà 1.2 + 2.3 + 3.4 + … + n.(n + 1) = \(\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Và 2 + 4 + 6 + . . . + 2n = \(\dfrac{\left(2n+2\right).n}{2}\)

⇒C = \(\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}+\dfrac{\left(2n+2\right).n}{2}-\dfrac{n.\left(n+1\right).\left(n+5\right)}{3}\)


Bình luận (0)
KD
26 tháng 9 2017 lúc 15:41

Dựa theo công thức tự thiết kế do các anh em trong đoàn ( những con người ẩn danh ) là : { k . ( k + 3 ) = k . ( k + 1 ) + 2 . k }

Ta có :

S = 1 . 4 + 2 . 5 + 3 . 6 + . . . + n . ( n + 3 )

S = ( 1 . 2 + 2 . 1 ) + ( 2 . 3 + 2 . 2 ) + . . . + [ n . ( n + 1 ) + 2 . n ]

S = ( 1 . 2 + 2 . 3 + . . . + n . ( n + 1 ) ) + ( 2 . 1 + 2 . 2 + . . . + 2 . n )

Dựa theo công thức số 37 và 55 quyển 7 của các em trong đoàn .

Ta có :

S = [ n . ( n + 1 ) . ( n + 2 ) ] + ( \(n^2\)+ n ) ]

Bình luận (0)