so sánh:
a,2\(^{24}\)và 3\(^{16}\)
b, (-16)\(^{11}\)và (-32)\(^9\)
c, (2\(^2\))\(^3\)và 2\(^2\)\(^3\)
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
so sánh 2 lũy thừa 3^4 và 9^3
A=1+2+2^2+2^3+...+2^2017 và B=2^2018-1
16^19 và 8^25
5^23 và 6x5^22
5^36 và 11^24
1. Tính M: 3^0+3^1+3^2+3^3+......+3^50
2.So sánh :
a)16^19 và 8^25
b)5^36 và 11^24
c)A=99^9+99^8 và B=100^9
d)A=1+2+2^2+......+2^41 và B=2^42-1
a) 1619 và 825
Ta có :
1619 = ( 24 )19 = 276
825 = ( 23 )25 = 275
Vì 276 > 275 Nên 1619 > 825
b) 536 và 1124
Ta có :
536 = ( 53 )12 = 12512
1124 = ( 112 )12 = 12112
Vì 12512 > 12112 Nên 536 > 1124
1.
\(M=3^0+3^1+......+3^{50}.\)
\(\Rightarrow3M=3+3^2+.......+3^{51}\)
\(\Rightarrow3M-M=\left(3+3^2+.......+3^{51}\right)-\left(3^0+3+.....+3^{50}\right)\)
\(\Rightarrow2M=3^{51}-1\)
\(\Rightarrow M=\frac{3^{51}-1}{2}\)
2.
\(a,\)Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}=\left(2^3\right)^5=2^{75}\)
Vì \(2^{76}>2^{75}\Rightarrow16^{19}>8^{25}\)
\(b,\)Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
so sánh
a) 230 và 320
b) 1020 và 9010
c) 2416 và 12511
d) 8116 và 1632
a) 230 = (23)10 = 810
320 = (32)10 = 910
Vì 810 < 910 nên 230 < 320
b) 1020 = (102)10 = 10010
Vì 10010 > 9010 nên 1020 > 9010
c) 2516 = (52)16 = 532
12511 = (53)11 = 533
Vì 532 < 533 nên 2516 < 12511
d) 8116 = (34)16 = 364
1632 = (42)32 = 464
Vì 364 < 464 nên 8116 < 1632
a, Ta có:
\(2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\)
Vì \(8^{10}< 9^{10}\) nên \(2^{30}< 3^{20}\)
b, Ta có:
\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)
Giữ nguyên \(90^{10}\)
Vì \(100^{10}>90^{10}\) nên \(10^{20}>90^{10}\)
So sánh ( không dùng bảng số hay máy tính bỏ túi)
a) 6 + 2$\sqrt{2}$ và 9
b) $\sqrt{2}+\sqrt{3}$ và 3
c) 9 + 4$\sqrt{5}$ và 16
d) $\sqrt{11}-\sqrt{3}$ và 2
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
2)so sánh
A/32^50 và 27^51
b/31^9 và 9^16
c/3^451 và 5^299
giúp mk vs
a) \(32^{50}\)và \(27^{51}\)
\(32^{50}=\left(32^2\right)^{25}=1024^{25}\)
\(27^{51}=\left(27^2\right)^{25}.27=729^{25}.27\)
Vì \(1024>729\)nên \(1024^{25}>729^{25}.27\)hay \(32^{50}>27^{51}\)
b) \(31^9\)và \(9^{16}\)
\(31^9=\left(91^3\right)^2=273^2\)
\(9^{16}=\left(9^2\right)^4=81^4=\left(81^2\right)^2=6561^2\)
Vì \(6561>273\)nên \(273^2< 6561^2\)hay \(31^9< 9^{16}\).
Bài 1: So sánh các số sau: a/ 2^150 và 3^100 b / 2^24 và 3^16
\(a,2^{150}=\left(2^3\right)^{50}=8^{50}< 9^{50}=\left(3^2\right)^{50}=3^{100}\\ b,2^{24}=\left(2^3\right)^8=8^8< 9^8=\left(3^2\right)^8=3^{16}\)
Bài 2. Trong các số sau, số nào là lũy thừa của một số tự nhiên với số mũ lớn hơn 1: 16; 32; 49; 99; 1000; 1002
Bài 3. So sánh:
a) 3^2 và 2^4
b) 3^2 + 4^2 và (3 + 4)^2
c) 13^2 – 9^2 và (13 – 9)^2
So sánh 2 số A và B biết :
A = (3+1)(2^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
A = (2-1)(2+1)(2^2 + 1 ) (2^4 + 1 ) ( 2^8 + 1) ( 2^16 + 1)
A = (2^2 - 1)(2^2 + 1 ) ( 2^4 + 1 )(2^8 + 1 )(2^16 + 1)
A= ( 2^4 - 1 )( 2^4 + 1 )(2^8 + 1 )(2^16 + 1 )
A = (2^8 - 1 )(2^8 + 1 )(2^16 + 1 )
A = (2^16 - 1 )(2^16 + 1 )
A = 2^32 - 1 < 2^32 = B
Vậy A = B
k mik nka !