phan tich da thuc thanh nhan tu a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)
a^3(b-c)+ b^3(c-a)+c^3(a-b) phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)
phan tich da thuc thanh nhan tu a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)-2abc-a^3-b^3-c^3.
phan tich da thuc thanh nhan tu
\(\left(\text{a}+b+c\right)^3-\text{a}^3-b^3-c^3\)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+3a^2b+3ab^2+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+2abc+b^2c+bc^2\right)\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+abc+abc+b^2c+bc^2\right)\)
\(=3\left[ab\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)\right]\)
\(=3\left(a+b\right)\left(ab+c^2+ac+bc\right)\)
\(=3\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Phan tich da thuc thanh nhan tu
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
phan tich da thuc thanh nhan tu
a3+b3+c3-3abc
a3 + b3 + c3 - 3abc
= (a3 + 3a2b + 3ab2 + b3 ) + c3 - 3abc - 3a2b - 3ab2
=[(a+b)3 + c3 ]- (3abc+3a2b+3ab2)
=(a+b+c)[(a+b)2 - (a+b)c + c2 ] - 3ab(c+a+b)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2+b2+c2-ab-bc-ca)
Phan tich da thuc thanh nhan tu
a(a+2b)^3-b(2a+b)^3
=a(a+2b)^3-[-b(a+2b)^3]
=(a+2b)^3(a+b)
phan tich da thuc thanh nhan tu
(a+b)3-(a-b)3
Đặt A = a + b ; B = a - b
A^3 + B^3
= (A + B)(A² - AB + B² )
= (a + b + a - b)[(a + b)² - (a + b)(a - b) + (a - b)²]
= 2a( a² + 2ab + b² - a² + b² + a² - 2ab + b² )
= 2a( a² + 3b²)
(a+b)\(^3\) - (a-b)\(^3\)
= [ (a+b) - (a-b) ] [ (a+b)\(^2\) + (a+b)(a-b) + (a-b)\(^2\) ]
= [ a+b - a+b ] [ a\(^2\) + 2ab + b\(^2\) + a\(^2\) - b\(^2\) + a\(^2\) - 2ab + b\(^2\) ]
= 2b ( 3a\(^2\) + b\(^2\) )
phan tich da thuc thanh nhan tu a3(b2-c2)+b3(c2-a2) + c3(a2-b2)