Cho S=1+2+2^2+2^3+.....2^100 so sánh S với 2^101
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Cho S=1+2^2+2^3+...+2^100
a)tính S
b)so sánh S với 2^101
Ai nhanh đúng tick ngay
câu a) vào đây xem nhé
https://olm.vn/hoi-dap/question/122892.html
So sánh S= 1+2+2^2+2^3+...+2^100 và 2^101
bài 5)
a) cho S= 1+2+22+...+29 hãy so sánh S với 5.28
b) cho A= 1+2+22+...+2100 hãy so sánh A với 2101
a) S= 1+2+22+...+29
2S=2+22+23+...+210
2S-S=(2+22+23+...+210)-(1+2+23+...+29)
S=210-1
5.28=2.2+1.28=1+22.28=1+210
=>S=5.28
b) A=1+2+22+....+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
A=2101-1
=> A<2101
cho S = 1 + 3 + 3^1 + 3^2 + 3^3+...+3^100
So sánh S và 3^101
Ta có:
\(S=1+3+3^1+3^2+...+3^{101}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow S\left(3-1\right)=3^{101}-1\Leftrightarrow S=\frac{3^{101}-1}{3-1}\)
\(\Rightarrow S=\frac{3^{101}-1}{3-1}< 3^{101}\)
Cho S=1/2^2+1/3^2+....+1/100^2 .So sánh S với 3/4
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
ta có
1/3^2 < 1/2*3 ; 1/4^2 < 1/3*4 ; .........; 1/100^2< 1/99*100
suy ra s=1/2^2+1/3^2+....+1/100^2 < 1/2*3 + 1/3*4 +...........+ 1/99*100
S < 1/4 + 1/2 - 1/3 + 1/3 +..........+ 1/99 - 1/100
suy ra S< 1/4 +1/2 - 1/100
hay S < 3/4 -1/100
mà 3/4 -1/100< 3/4
suy ra s<3/4
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
So sánh S với 1
Ta có
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..............
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)
ĐPcm
Giải:
\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\)
\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\)
\(\Rightarrow S< 1\)
Vậy S < 1.
Cho S=1/2^2+1/3^2+....+1/100^2 .So sánh S với 3/4
Nhan xet:
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
....
\(\frac{1}{100^2}< \frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
Vay:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{99}{202}< \frac{3}{4}\)
S=1/3+2/3^2+3/3^3+4/3^4+..................+100/3^100. So sánh S với 1/5
So sánh S=1/2+2/2^2+3/2^+1)3+4/2^4+.....+100/2^100 với 2