2S=2+2^2+2^3+...+2^101
2S-S=2^101-1
S=2^101-2<2^101
hok tốt
\(S=1+2+2^2+\cdot\cdot\cdot+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+\cdot\cdot\cdot+2^{101}\)
\(\Rightarrow2S-S=\left(2+\cdot\cdot+2^{101}\right)-\left(1+\cdot\cdot\cdot+2^{100}\right)\)
\(\Rightarrow S=2^{101}-1\)<\(2^{101}\)
\(\Rightarrow S\)<\(2^{101}\)
S = 1 + 2 + 22 + .... + 2100
=> 2S = 2 + 22 + 23 + ... + 2101
Lấy 2S trừ S theo vế ta có :
2S - S = (2 + 22 + 23 + ... + 2101) - (2 + 22 + 23 + ... + 2101)
S = 2101 - 1
=> S < 2101
S = 1 + 2 + 22 + 23 + ... + 2100
2S = 2 + 22 + 23 + 24 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )
S = 2101 - 1
=> S < 2101
Vậy ....
\(S=1+2+2^2+2^3+...+2^{100}\)
\(2S=2+2^2+2^3+2^4+...+2^{101}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(S=2^{101}-1\)
Vì \(2^{101}-1< 2^{101}\)
\(\Rightarrow S< 2^{101}\)
Vậy \(S< 2^{101}\)
S=1+2+22+23+....+2100
2S= 2+22+23+....+2100+2101
2S-S=2101-1
S=2101-1 < 2101
=> S<2101