1)Rút gọn
a) /x-3/+/x-5/ với(3<x<5)
b)/2x+1/-/2x+1/ với x>\(\frac{-1}{2}\)
rút gọn biểu thức A=\(x/x-1+3/x+1+3-5*x/x^2-1\) với x<>-1;1
\(A=\frac{x}{x-1}+\frac{3}{x+1}-\frac{5x}{x^2-1}\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x}{\left(x-1\right)\left(x+1\right)}+\frac{3x-3}{\left(x-1\right)\left(x+1\right)}-\frac{5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x+3x-3-5x}{\left(x-1\right)\left(x+1\right)}=\frac{x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)
Bài 1 : Rút gọn các biểu thức sau
a) M = / 2x - 3 / + /x - 1 / với > 1,5
b) N = / 2 - x / - 3 / x + 1 / với x < -1
*c) P = / 3x - 5 / + / x - 2 /
*d) Q = / x - 3 / - 2 / - 5x /
rút gọn rồi tính giá trị biểu yhhữc sau : A=(2x-1)-(2x+3)(x-2)-2(x+2)(x+5) với x=-3
A= ( 2x-1) - (2x+3)(x-2) - 2(x+2)(x+5)
= (2x-1) - (2x^2 - 4x+3x-6) - (2x-4)(x+5)
= (2x-1) - (2x^2-4x+3x-6) - (2x^2+10x-4x-20)
= 2x-1-2x^2+4x-3x+6-2x^2-10x+4x+20
= -3x-4x^2+25
= -4x^2-3x+25
Với x=-3 ta có:
(-4).(-3)^2-3.(-3)+25
=-36+9+25
=-2
Rút gọn biểu thức
a)E=|3x+1|+|x-5|với x>=5
b)E=|x+1|+|x-3|
a) với x>=5 => E=3x+1+x-5=4x-4=4(x-1)
b) th1: x<-1 => E=-x-1-x+3=-2x+2=-2(x-1)
th2: \(-1\le x\le3\)=> E=x+1-x+3=4
th3: x>3 =>E= x+1+x-3=2x-2=2(x-1)
Bài 1.Rút gọn A = \(\sqrt{x^2+\dfrac{2x^2}{3}}\) với x<0
Bài 2.Rút gọn biểu thức \(\left(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{\sqrt{30}-\sqrt{6}}{\sqrt{5}-1}\right)\):\(\dfrac{2}{2\sqrt{5}-\sqrt{6}}\)
Bài 3.Cho ba biểu thức A = a\(\sqrt{b}\) + b\(\sqrt{a}\);B = \(a\sqrt{a}-b\sqrt{b}\) ;C = a-b.Trong ba biểu thức trên biểu thức bằng biểu thức \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) với a,b>0
Bài 7.Cho B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{98}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).Giá trị của biểu thức B là
Bài 8.Gọi M là giá trị nhỏ nhất của \(\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\) và N là giá trị lớn nhất của \(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\).Tìm M và N
Giúp mình với!Mình đang cần gấp
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
cho biểu thức a=((√x+1)/(√x-1) -(√x+3)/(√x+2))(x-1)/(√x+5) với 0≤x≠1 rút gọn biểu thức a tìm x để a=4/5
Bài 2. Rút gọn biểu thức:
a) 2x( x + 3xy – 1) – x(2x – 6xy + 3)
b) (x – 1)(x + 2) – (x+5)(x – 1)
giúp với ạ
\(a,=2x^2+3x^2y-2x-2x^2+6x^2y-3x=9x^2y-5x\\ b,=\left(x-1\right)\left(x+2-x-5\right)=-3\left(x-1\right)=3-3x\)
Rút gọn biểu thức:
A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)với x\(\ge\)0;\(x\ne\)1
Tìm x để A <\(\dfrac{3}{5}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)
\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)
\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\)
\(\Rightarrow1< x< 36\)
\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)
\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)
\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
Bài 1: Cho biểu thức P = √x √x x-4 √x−2+√x+2) 2√x (với x > 0 và x ≠ 4) a) Rút gọn biểu thức P b) Tìm x để P = 3 Cho biểu thức P = √x √x x-25 + √x-5 √x+5) 2√x (với x > 0 và x ≠ 25) a) Rút gọn biểu thức P b) Tìm x để P = 2
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Rút gọn biểu thức sau:
A= 2|3-x| + 5-4x với x lớn hơn hoặc bằng 3; x< 1
mai minh
học bài
này rùi bn
ráng đợi thêm
2 ngày nữa nhé