Cho a,b,c dương thỏa mãn (a+b)(a+c)=8 tìm GTLN của A= abc(a+b+c)
Mong mọi người giúp mình
Cho 3 số a,b,c dương thỏa mãn (a+b)(a+c)=8.
Tìm GTLN của biểu thức A=abc(a+b+c)
MN giúp em bài này vs ak. rồi em tick luôn cho ak...em đang cần gấp, mong mn giúp ạ!
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
Cho a, b, c là các số dương thỏa mãn a + b + c = \(\frac{1}{abc}\). Tìm min P = (a+b)(a+c).
Mọi người giúp mình nha. Mình giải đến nửa rồi bị bí :>
Ta có \(\frac{1}{abc}=a+b+c\)
<=> \(a\left(a+b+c\right)=\frac{1}{bc}\)
\(P=\left(a+b\right)\left(a+c\right)\)
\(=a\left(a+b+c\right)+bc\)
\(=\frac{1}{bc}+bc\ge2\)
Dấu bằng xảy ra khi \(bc=1\)và a thỏa mãn \(a+b+\frac{1}{b}=\frac{1}{a}\)
Cho a,b,c >=0. Thỏa mãn: a+b+c=3. tìm Max của P=a√b +b√c +c√a - √abc
MÌNH ĐANG CẦN GẤP MỌI NGƯỜI GIÚP MÌNH NHA !!!!
Bài toán:
a) Cho các số thực dương a,b,c thỏa mãn a+b+2c=6. Tìm GTNN của A= a^2+ b^2+ c^2 + 1/a^2+b^2+c^2
b) Cho các số thực dương a,b,c thỏa mãn Biết rằng 1 bé hơn hoặc bằng a;b;c bé hơn hoặc bằng 2 và a+b+c=5
tìm GTLN, GTNN của B=a^3+b^3+c^3
Giúp mình giải bài này với!!!!!!!!!!!!!!!!
cho a,b,c là 3 số thực số thực dương và thỏa mãn: abc=1
Tìm GTLN của D = \(\dfrac{a}{b^4+c^4+a}\)+\(\dfrac{b}{a^4+c^4+b}\)+\(\dfrac{c}{a^4+b^4+c}\)
Trước tiên ta đi chứng minh BĐT phụ là:
Với thì
Cách CM:
BĐT trên tương đương với: (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
Nó bị mất cái dấu gạch ngang chỗ phân số nha b
Trước tiên ta đi chứng minh BĐT phụ là:
Với thì
Cách CM:
BĐT trên tương đương với: (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
cho a,b,c là 3 số dương thỏa mãn : 1/1+a + 1/1+b + 1/1+c = 2. tìm GTLN của Q = abc
Ta có : \(\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\); \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
\(\Rightarrow\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\right]^2}}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{a}{a+1}=\frac{b}{b+1}=\frac{c}{c+1}\\\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\end{cases}\Leftrightarrow a=b=c=\frac{1}{2}}\)
Vì \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Rightarrow\frac{1}{1+a}=2-\frac{1}{1+b}-\frac{1}{1+c}\)
\(\Rightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\)
\(\Rightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)(Theo AM-GM cho 2 số dương)
Chứng minh tương tự,ta có:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) suy ra :
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\cdot\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow abc\le8\)
Dấu bằng xảy ra khi và chỉ khi:\(a=b=c=\frac{1}{2}\)
Vậy \(Q_{max}=8\Leftrightarrow a=b=c=\frac{1}{2}\)
Cho 3 số dương a,b,c thỏa mãn \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\). Tìm GTLN của P = abc
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\)
=> \(\dfrac{1}{a+1}=1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)( AM-GM)
Tương tự ta có \(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ac}{\left(a+1\right)\left(c+1\right)}}\); \(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế với vế các bđt trên
=> \(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge8\sqrt{\dfrac{a^2b^2c^2}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2}}=8\cdot\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
=> \(1\le8abc\)<=> \(abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra <=> a=b=c=1/2
ý quên thiếu KL
Vậy MaxP = 1/8 <=> a=b=c=1/2
Bài 1 : Cho a,b,c,d là các số nguyên thỏa mãn : a + b = c + d
CMR : M = \(a^2+b^2+c^2+d^2\) luôn là tổng của 3 SCP |
Bài 2 : Cho a , b , c là độ dài 3 cạnh 1 tam giác thỏa mãn
(a+b)(b+c)(c+a) = 8abc
Mong mọi người giúp mình , mình cần rất gấp .
Câu 2 (Bổ Sung) : Chứng minh tam giác đã cho là tam giác đều
cho a,b,c là 3 số thực dương thỏa mãn a+b+c+ab+bc+ac=6. tính gtln của P=abc