Những câu hỏi liên quan
DP
Xem chi tiết
ES
Xem chi tiết
LP
19 tháng 8 2023 lúc 17:04

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

Bình luận (0)
LV
Xem chi tiết
NT
4 tháng 10 2021 lúc 23:59

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Bình luận (0)
TP
Xem chi tiết
MU
Xem chi tiết
NH
1 tháng 10 2023 lúc 13:43

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

Bình luận (0)
NH
1 tháng 10 2023 lúc 13:51

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

Bình luận (0)
NH
1 tháng 10 2023 lúc 13:54

b, B = 102010 + 14 

Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3

B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2 

Bình luận (0)
H24
Xem chi tiết
DT
Xem chi tiết
TH
7 tháng 3 2018 lúc 22:30

a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11

Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.

b. Đề bài sai

Chúc bạn học tốt!

Bình luận (0)
DT
8 tháng 3 2018 lúc 21:22

Một lần nữa cảm ơn truong huy hoang nhé!

Bình luận (0)
TH
8 tháng 3 2018 lúc 22:34

Có gì đâu, câu nào khó cứ hỏi mk nhé, các bn bảo mk vẫn giỏi Toán mà.

Bình luận (0)
HV
Xem chi tiết

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Bình luận (0)

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

Bình luận (0)

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Bình luận (0)
DH
Xem chi tiết
AH
11 tháng 9 2020 lúc 16:24

Lời giải:
Ký hiệu $\text{BS9}$ là bội số của $9$

Ta có:

$10^{10}+2=(9+1)^{10}+2=(\text{BS9}+1)+2=\text{BS9}+3\not\vdots 9$ do $3\not\vdots 9$

Mặt khác:

$10^{10}+2=\text{BS9}+3=\text{BS3}+3=\text{BS3}\vdots 3$

Do đó $10^{10}+2$ chia hết cho $3$ nhưng không chia hết cho $9$

Bình luận (0)
NT
Xem chi tiết
CS
2 tháng 8 2016 lúc 16:53

a)

Ta có :

10+ 5

= (2 x 5)6 + 5

= 26 x 56 + 57 

= 2x 5+ 5x 5

= 5x (2+ 5)

= 56 x  69

Vì 69 ⋮ 69 => 5⋮ 69 => 10+ 5⋮ 69

b)

Ta có :

220 - 217 

= 217 x 2- 217 x 1

= 217 x (2- 1)

= 217 x 7

Vì 7 ⋮ 7 => 217 x 7 ⋮ 7 => 220 - 217 ⋮ 7

k nha bn !!!

Bình luận (0)