1.2.3+2.3.4+3.4.5+...+19.20.21
Hãy tính tổng
Câu5: Tính : 1.2.3+2.3.4+3.4.5+...................+28.29.30.Từ đó cho biết kết quả của tổng : 1.2.3+2.3.4+3.4.5+............................+(n-1).n.(n+1) theo n
(với n là số tự nhiên khác 0 )
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
tính tổng: A= 1.2.3+2.3.4+3.4.5+...+99.100.101
1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)
2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)
3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)
.................
99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)
C = 1.2.3+2.3.4+3.4.5+.........+99.100.101
C= 1/4 . (99.100.101.102 - 98.99.100.101)
CHUC BN HOK GIỎI!
Tính tổng:
A=1.2.3+2.3.4+3.4.5+...+97.98.99
A= 1.2.3 +2.3.4 + 3.4.5 + ... + 97.98.99
=> 4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 97.98.99.4
=> 4A =1.2.3.4 + 2.3.4.(5-1) + 3.4.5(6-2) + ...+ 97.98.99( 100 - 96)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + 97.98.99.100 - 96.97.98.99.
=>4A= 97.98.99.100
=> A= (97.98.99.100)/ 4 = 97.98.99.25
Em có thể tham khảo cách làm tương tự như link:
Cách làm nhé. Đừng chép hết. Đề bài của bạn khác 1 chút so với của em.
Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath
Tính hợp lý các tổng sau :1.2.3+2.3.4+3.4.5+...+100.101.102
Công thức là:1/4.(n-2)(n-1)n(n+1)
=>1.2.3+...+100.101.102=1/4.100.101.102.103
=25.101.102.103
=26527650
Tính nhanh tổng sau: 1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{10\cdot11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+..+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11\cdot12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)=\dfrac{1}{2}\cdot\dfrac{65}{132}=\dfrac{65}{264}\)
Ta có: \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Đặt \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(\Leftrightarrow2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\)
\(=\dfrac{1}{2}-\dfrac{1}{11.12}=\dfrac{65}{132}\)
\(\Rightarrow A=\dfrac{65}{132}:2=\dfrac{65}{264}\)
Bài 4:
a) Chứng minh các công thức sau:
A = 1.2.3+2.3.4+3.4.5+...+(n-2)(n-1)n = (n−2).(n−1).n.(n+1):
4
b) Áp dụng tính tổng sau: G = 1.2.3 + 2.3.4 + 3.4.5 +...+ 2021.2022.2023
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
cau a thi sao ha ban ?
ok thanks ban nhe
Tính tổng A= 1/1.2.3 +1/2.3.4+1/3.4.5+.......+1/37.38.39
A=1/1-1/2-1/3+1/2-1/3-1/4+...+1/37-1/38-1/39
=1/1-1/39
=39/39-1/39 =38/39
Làm đại ko biết đúng hay sai hên xui nha=v='
tính tổng B=1.2.3+2.3.4+3.4.5+......+n(n+1)(n+2)
B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4
= [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4
=\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)
B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
1.2.3+2.3.4+3.4.5+........48.49.50
tính tổng
Đặt A=1.2.3+2.3.4+3.4.5+........+48.49.50
4A=1.2.3.4+2.3.4.4+..........+48.49.50.4
=1.2.3.4+2.3.4.(5-1)+.........+48.49.50.(51-47)
=1.2.3.4+2.3.4.5-1.2.3.4+...........+48.49.50.51-47.48.49.50
=48.49.50.51
=5997600
A=1499400
Vậy A=1499400
Đặt \(A=1\cdot2\cdot3+2\cdot3\cdot4+........+48\cdot49\cdot50\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+......+48\cdot49\cdot50\cdot4\)
\(=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+..........+48\cdot49\cdot50\cdot\left(51-47\right)\)
\(=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+......+48\cdot49\cdot50\cdot51-47\cdot48\cdot49\cdot50\)
\(=48\cdot49\cdot50\cdot51\)
\(\Rightarrow A=\frac{48\cdot49\cdot50\cdot51}{4}\)
Ai hack nick mình thì trả lại đi !!!
nick :
Tên: Vô danhĐang học tại: Trường Tiểu học Số 1 Nà NhạnĐịa chỉ: Huyện Điện Biên - Điện BiênĐiểm hỏi đáp: 112SP, 0GPĐiểm hỏi đáp tuần này: 47SP, 0GPThống kê hỏi đápAi hack hộ mình rồi gửi cho mình nhé mình cảm ơn
Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick
Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !
LInk : https://olm.vn/thanhvien/lehoangngantoanhoc