rút gọn A= \(\frac{\left(\sqrt{5+3x}-\sqrt{5-3x}\right)\sqrt{5-\sqrt{25-9x^2}}}{x}\)
Rút gọn P
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\left(x\ge0,x\ne25\right)\)
\(P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{5}{\sqrt{x}+5}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\\ \Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)}\\ \Leftrightarrow P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(\Leftrightarrow P=\dfrac{5}{\sqrt{x}+5}\)
-> \(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5}{\left(\sqrt{x}+5\right)}\)
Rút gọn:
\(A=\left(\frac{4x\sqrt{x}+3x+9}{x+5\sqrt{x}+6}-\frac{3-\sqrt{x}}{2+\sqrt{x}}\right)\div\left(\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{3+4\sqrt{x}}{x+5\sqrt{x}+6}\right)\)
\(B=\left(x-\sqrt{x}-2\right)\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{4-\sqrt{x}}{x-2\sqrt{x}}\right)\)
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
Để \(\sqrt{x}\) xác định
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow-7x\le0\)
\(\Rightarrow\sqrt{-7x}\)không tồn tại
\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại
=> A không tồn tại
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Rút gọn
\(\left(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\frac{9x-1}{\sqrt{3x}+1}\right).\frac{1}{2\sqrt{x}+2x}\)
Rút gọn các biểu thức sau:
\(a.\frac{1}{\sqrt{2}-\sqrt{3}}-\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\) \(b.\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(c.\sqrt{\frac{3+2\sqrt{2}}{3-2\sqrt{2}}}+\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) \(d.\frac{1}{\sqrt{5}-2}.\sqrt{\frac{2\sqrt{5}-4}{2\sqrt{5}+4}}\)
\(e.x+1-\sqrt{x^2-2x+1}\left(x>=1\right)\) \(f.3x+\sqrt{9x^2+6x+1}\left(x< \frac{1}{3}\right)\)
\(g.\frac{1}{9x^2-1}.\sqrt{1-6x+9x^2}\left(x< =\frac{1}{3}\right)\) \(h.\frac{a-b}{3b}.\sqrt{\frac{4a^2b^4}{a^2-2ab+b^2}}\left(a< b< 0\right)\)
b)
)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
= \(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)
=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)
=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)
=\(\frac{4\sqrt{5}}{4-5}\)
=\(\frac{4\sqrt{5}}{-1}\)
\(-4\sqrt{5}\)
\(B=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
Rút Gọn
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)