Tìm GTNN của biểu thức:
A=\(\frac{x-x^2-1}{x^2+\frac{1}{x^2}+1}\)
Thx = 3tk
cho biểu thức:A=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)
với x>=0
a,Rút gọn
b,Tìm m để có x thỏa mãn x+A=m
c,Tìm GTNN của biểu thức M
cho biểu thức:A=\(\left(\frac{x-3\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{\sqrt{x}+2}\right)\left(\frac{x\sqrt{x}+1}{\sqrt{x}+1}+\sqrt{x}+4\right)\)
tìm GINN của A
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\sqrt{x}+2}\right].\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}+\sqrt{x}+4\right]\) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(=\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}+2}.\left(x+5\right)\)
\(=\frac{x+5}{\sqrt{x}+2}\)
\(=\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{x-2\sqrt{x}+1}{\sqrt{x}+2}\)
\(=2+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+2}\ge2\)
Dấu '=' xảy ra khi \(x=1\)
Vậy \(A_{min}=2\) khi \(x=1\)
Tìm GTNN của biểu thức:A=/x-1/+/x-2/+/x-3/
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTNN của biểu thức
A=x^2+3x+1/x với x>0
Thx
\(\frac{x^2+3x+1}{x}=x+3+\frac{1}{x}\ge2+3\Rightarrow A\ge5\)
\(\Rightarrow MinA=5\Leftrightarrow x=1\)
Tìm GTLN của biểu thức:A=\(\frac{2}{x^2+x+1}\)
Tìm GTNN của các biểu thức sau:
1) G= $\frac{x^2}{x-1}$ với x>1
2) H= x+$\frac{1}{x}$ với x$\geq$2
3) K= $x^{2}$ +$\frac{1}{x}$ với x $\geq$3
Lời giải:
1. Áp dụng BĐT Cô-si
$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$
$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$
Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$
$\Leftrightarrow x=0$ hoặc $x=2$
2.
Áp dụng BĐT Cô-si:
$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$
$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)
Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
3.
Áp dụng BĐT Cô-si:
$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$
$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)
Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$
Tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức:A=\(\frac{x+1}{x^2+x+1}\)
Câu 1:a)Rút gọn biểu thức:A=\(\left(1+\frac{x}{x+1}\right):\left(\frac{3x^2}{x^2-1}+1\right)\)
b)Rút gọ biểu thức A
b)Tính giá trị của biểu thức A khi x=1/3
Câu 2:Rút gọ phân thức\(\frac{12x^4y^2}{15xy^2}\)
b)Tìm x(x+1)-(x+2)2=2
c)Cho \(x+\frac{1}{x}=3\) Hãy tính giá trị của biểu thức \(x^3\frac{1}{x^3}\)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)