Những câu hỏi liên quan
NM
Xem chi tiết
NM
12 tháng 10 2018 lúc 17:20

giúp mk với

Bình luận (0)
NM
12 tháng 10 2018 lúc 18:32

giúp mk với

Bình luận (0)
H24
Xem chi tiết
CM
26 tháng 5 2019 lúc 16:56

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\sqrt{x}+2}\right].\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}+\sqrt{x}+4\right]\) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(=\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}+2}.\left(x+5\right)\)

\(=\frac{x+5}{\sqrt{x}+2}\)

\(=\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{x-2\sqrt{x}+1}{\sqrt{x}+2}\)

\(=2+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+2}\ge2\)

Dấu '=' xảy ra khi \(x=1\)

Vậy \(A_{min}=2\) khi \(x=1\)

Bình luận (0)
NH
Xem chi tiết
BH
12 tháng 11 2017 lúc 11:22
GTNN của A=1 <=>2< hoặc =x < hoặc =3
Bình luận (0)
DS
Xem chi tiết
H24
Xem chi tiết
BH
25 tháng 8 2019 lúc 10:40

\(\frac{x^2+3x+1}{x}=x+3+\frac{1}{x}\ge2+3\Rightarrow A\ge5\)

\(\Rightarrow MinA=5\Leftrightarrow x=1\)

Bình luận (0)
ND
Xem chi tiết
HV
Xem chi tiết
AH
13 tháng 7 2023 lúc 0:01

Lời giải:
1. Áp dụng BĐT Cô-si

$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$

$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$ 

Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$

$\Leftrightarrow x=0$ hoặc $x=2$

 

Bình luận (0)
AH
13 tháng 7 2023 lúc 0:03

2.

Áp dụng BĐT Cô-si:

$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$

$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)

Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
 

Bình luận (0)
AH
13 tháng 7 2023 lúc 0:05

3.

Áp dụng BĐT Cô-si:

$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$

$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)

Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$

Bình luận (0)
NV
Xem chi tiết
NP
Xem chi tiết
NT
3 tháng 3 2022 lúc 9:57

Bài 1: 

a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)

\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)

b: Thay x=1/3 vào A, ta được:

\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)

Bình luận (0)