Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
IN
Xem chi tiết
JN
Xem chi tiết
HA
18 tháng 9 2016 lúc 21:02

Anwer : 1

Bình luận (0)
MT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
BY
14 tháng 7 2019 lúc 14:40

 bạn có thể phân tích thành nhân tử rồi rút gọn

vd: như tử của cái bên trái ta tách đc thế này: 3a^2-3ab+ab-b^2 bằng 3a(a-b)+b(a-b) bằng (3a+b)(a-b) chẳng hạn là vậy

Chúc bạn giải thành công!:)) 

Bình luận (0)
VT
14 tháng 7 2019 lúc 14:41

\(A=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}:\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)

\(=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}.\frac{3a^2+2ab-b^2}{3a^2-2ab-b^2}\)

\(=\frac{\left(3a^2-2ab-b^2\right)\left(3a^2+2ab-b^2\right)}{\left(2a^2+ab-b^2\right)\left(3a^2-2ab-b^2\right)}\)

\(=\frac{9a^4+6a^3b-3a^2b^2-6a^3b-4a^2b^2+2ab^3-3a^2b^2-2ab^3+b^4}{6a^4-4a^3b-2a^2b^2+3a^3b-2a^2b^2-ab^3-3a^2b^2+2ab^3+b^4}\)

\(=\frac{9a^4-10a^2b^2+b^4}{6a^4-a^3b-7a^2b^2+ab^3+b^4}\)

\(=\frac{9a^4-9a^2b^2-a^2b^2+b^4}{6a^4-6a^2b^2-a^2b^2+b^4-a^3b+ab^3}\)

\(=\frac{9a^2\left(a^2-b^2\right)-b^2\left(a^2-b^2\right)}{6a^2\left(a^2-b^2\right)-b^2\left(a^2-b^2\right)-ab\left(a^2-b^2\right)}\)

\(=\frac{\left(a^2-b^2\right)\left(9a^2-b^2\right)}{\left(a^2-b^2\right)\left(6a^2-b^2-ab\right)}\)

\(=\frac{9a^2-b^2}{6a^2-b^2-ab}\)

\(=\frac{\left(3a-b\right)\left(3a+b\right)}{6a^2-3ab+2ab-b^2}\)

\(=\frac{\left(3a-b\right)\left(3a+b\right)}{3a\left(a-b\right)+2b\left(a-b\right)}\)

\(=\frac{\left(3a-b\right)\left(3a+b\right)}{\left(a-b\right)\left(3a+2b\right)}\)

Bình luận (0)
NN
Xem chi tiết
DH
14 tháng 7 2021 lúc 9:18

undefined

Bình luận (0)
H24
14 tháng 7 2021 lúc 9:20

`a)x^2(x+4)(x-4)-(x^2+1)(x^2-1)`

`=x^2(x^2-16)-(x^2+1)(x^2-1)`

`=x^4-16x^2-(x^4-1)`

`=-16x^2+1`

`b) (a-b+c)^2-(a-c)^2-2ac+2ab`

`=a^2+b^2+c^2-2ab-2bc+2ac-(a^2-2ac+c^2)-2ac+2ab`

`=a^2+b^2+c^2-2ab-2bc+2ac-a^2+2ac-c^2-2ac+2ab`

`=b^2-2bc+2ac`

Bình luận (0)
NT
14 tháng 7 2021 lúc 15:05

a) Ta có: \(x^2\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^4-16x^2-x^4+1\)

\(=-16x^2+1\)

b) Ta có: \(\left(a-b+c\right)^2-\left(a-c\right)^2-2ac+2ab\)

\(=\left(a-b+b-a+c\right)\left(a-b+c+a-c\right)-2ac+2ab\)

\(=c\left(2a-b\right)-2ac+2ab\)

\(=2ac-2bc-2ac+2ab\)

\(=2ab-2bc\)

Bình luận (0)