\(x^2-7x+12\)
\(x^2-7x+10\)
x^2 + 6x + 5
x^2 - 7x + 12
x^2 -7x + 10
\(x^2+6x+5=x^2+5x+x+5=x\left(x+5\right)+\left(x+5\right)=\left(x+1\right)\left(x+5\right)\)
\(x^2-7x+12=x^2-4x-3x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-3\right)\left(x-4\right)\)
\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
\(a,x^2+6x+5=x^2+5x+x+5\)
\(=x\left(x+5\right)+\left(x+5\right)=\left(x+5\right)\left(x+1\right)\)
\(b,\)\(x^2-7x+12=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
\(c,\)\(x^2-7x+10=x^2-2x-5x+10\)
\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
a) \(x^2+6x+5=x^2+5x+x+5\)
\(=x\left(x+5\right)+\left(x+5\right)=\left(x+1\right)\left(x+5\right)\)
b)\(x^2-7x+12=x^2-4x-3x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-3\right)\left(x-4\right)\)
c)\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)\)
\(=\left(x-5\right)\left(x-2\right)\)
hc tốt
1) x2 -7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)
2) x2 + 3x + 2 = x2 + 2x + x + 2 = x(x + 2) + (x + 2) = (x + 1)(x + 2)
3) x2 - 7x + 12 = x2 - 3x - 4x + 12 = x(x - 3) - 4(x - 3) = (x - 3)(x - 4)
4) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)
5) 16x - 5x2 - 3 = 15x - 5x2 + x - 3 = -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x)
6) 6x2 + 7x - 3 = 6x2 - 2x + 9x - 3 = 2x(3x - 1) + 3(3x - 1) = (2x + 3)(3x - 1)
7) 3x2 - 3x - 6 = 3x2 - 6x + 3x - 6 = 3x(x - 2) + 3(x - 2) = (x - 2)(3x + 3) = 3(x - 2)(x + 1)
8) 3x2 + 3x - 6 = 3x2 - 3x + 6x - 6 = 3x(x - 1) + 6(x - 1) = (x - 1)(3x + 6) = 3(x - 1)(x + 2)
9) 6x2 - 13x + 6 = 6x2 - 9x - 4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3)
10) 6x2 + 15x + 6 = 6x2 + 12x + 3x + 6 = 6x(x + 2) + 3(x + 2) = (x + 2)(6x + 3) = 3(x + 2)(3x + 1)
11) 6x2 - 20x + 6 = 6x2 - 18x - 2x + 6 = 6x(x -3) - 2(x - 3) = (6x - 2)(x - 3) = 2(3x - 1)(x - 3)
12) 8x2 + 5x - 3 = 8x2 + 8x - 3x - 3 = 8x(x + 1) - 3(x + 1) = (x + 1)(8x - 3)
Ai đó giúp mình làm bài này với
(x2+7x+10)(x2+7x+12)-24
https://olm.vn/hoi-dap/detail/12795416232.html
Bạn tham khảo với link trên nha!~
#Học tốt#
PTĐTTNT bằng 3 cách
a)x^2+7x+12
b)3x^2-5x+2
c)x^2+9x-10
d)x^2-7x-8
e)2x^2+3x-5
a) \(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
b) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 4)(x + 3)
b) 3x2 - 5x + 2 = 3x2 - 3x - 2x + 2 = 3x(x - 1) - 2(x - 1) = (3x - 2)(x - 1)
c) x2 + 9x - 10 = x2 + 10x - x - 10 = x(x + 10) - (x + 10) = (x - 1)(x + 10)
d) x2 - 7x - 8 = x2 - 8x + x - 8 = x(x - 8) + (x - 8) = (x + 1)(x - 8)
e) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
(x2+7x+10).(x2+11x+28)=12
Thực hiện phép chia phân thức :
a) \(\dfrac{x^2-5x+6}{x^2+7x+12}:\dfrac{x^2-4x+4}{x^3+3x}\)
b) \(\dfrac{x^2+2x-3}{x^2+3x-10}:\dfrac{x^2+7x+12}{x^2-9x+14}\)
giải phương trình
a)\(\frac{7x+10}{x+1}\left(x^2-x-2\right)=\frac{7x+10}{x+1}\left(2x^2-3x-5\right)\)
b)\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
c)\(x^2+\frac{1}{x^2}+\frac{9x}{2}-\frac{9}{2x}+7=0\)
tìm x : (7x+3)2-(7x-1)(7x-3)=-12
\(\left(7x+3\right)^2-\left(7x-1\right)\left(7x-3\right)=-12\)
\(\Rightarrow49x^2+42x+9-\left(49x^2-21x-7x+3\right)=-12\)
\(\Rightarrow70x+18=0\) \(\Rightarrow x=-\dfrac{18}{70}=-\dfrac{9}{35}\)
Tính: a,x²-5x+6/ x²+7x+12 : x²-4x+4/ x²+3x b,x²+2x-3/ x²+3x-10 : x²+7x+12/ x²-9x+14
a: \(\dfrac{x^2-5x+6}{x^2+7x+12}:\dfrac{x^2-4x+4}{x^2+3x}\)
\(=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x+3\right)\left(x+4\right)}\cdot\dfrac{x\left(x+3\right)}{\left(x-2\right)^2}\)
\(=\dfrac{x\left(x-3\right)}{\left(x-2\right)\left(x+4\right)}\)
b: \(\dfrac{x^2+2x-3}{x^2+3x-10}:\dfrac{x^2+7x+12}{x^2-9x+14}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x-7\right)}{\left(x+3\right)\left(x+4\right)}\)
\(=\dfrac{\left(x-1\right)\left(x-7\right)}{\left(x+5\right)\left(x+4\right)}\)