tìm x:
(2x-5)^2-(3+2x)^2=0
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x
1) (2x-1)(x+3)(2-x)=0
2)x^3 + x^2 + x + 1 = 0
3) 2x(x-3)+5(x-3) =0
4)x(2x-7)-(4x-14)=0
5) 2x^3 + 3x^2 + 2x + 3 = 0
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
Tìm x
a) (x-5)^2-(x+3)^2=2x-7
b) (2x)^2-5=0
c) (2x-7)^2-(5/3-2x)^2=0
a) ( x - 5 )2 - ( x + 3 )2 = 2x - 7
=> x2 - 10x + 25 - ( x2 + 6x + 9 ) = 2x - 7
=> -16x + 16 = 2x - 7
=> 18x = 23
=> x = \(\frac{23}{18}\)
b ) ( 2x )2 - 5 = 0
=> 4x2 = 5
=> x2 = \(\frac{5}{4}\)
=> x = \(\pm\frac{\sqrt{5}}{2}\)
c) ( 2x - 7 )2 - ( \(\frac{5}{3}\)- 2x ) 2 = 0
=> 4x2 - 28x + 49 - \(\frac{25}{9}\)+ \(\frac{20}{3}\)x - 4x2 = 0
=> \(-\frac{64}{3}x\)+ \(\frac{416}{9}\)= 0
=> \(\frac{-64}{3}x=\frac{-416}{9}\)
=> x = \(\frac{13}{6}\)
a) (x-5)^2-(x+3)^2=2x-7
x2-10x+25-(x2+6x+9)=2x -7
x2-10x+25-x2-6x-9=2x-7
x2-x2-10x-6x-2x=-7+9-25
-18x=-23
x=23/18
b)(2x)^2-5=0
4x2-5=0
4x2=5
x2=5/4
x=\(\sqrt{\frac{5}{4}}\)
c)(2x-7)^2-(5/3-2x)^2=0
(2x-7)^2=(5/3-2x)^2
2x-7=5/3-2x
2x+2x=5/3+7
4x=26/3
x=13/6
Chúc bạn học tốt!
Tìm x
(2x-3).(x+1)-2x^2+6x=0
(X^2-x+1).(x-3)-x^3+4x^2=0
(X^2-2).(x^2+2)-x^4-2x+5=0
(X-3).(x^2-3x+2)-(x^2-2x-7).(x-2)+2x^2-2x=0
( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0
<=> 2x2 - x - 3 - 2x2 + 6x = 0
<=> 5x - 3 = 0
<=> 5x = 3
<=> x = 3/5
( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0
<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0
<=> 4x - 3 = 0
<=> 4x = 3
<=> x = 3/4
( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0
<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0
<=> x4 + 1 - x4 - 2x = 0
<=> 1 - 2x = 0
<=> 2x = 1
<=> x = 1/2
( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0
<=> 12x - 20 = 0
<=> 12x = 20
<=> x = 20/12 = 5/3
a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)
b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)
\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)
c ; d tương tự nhé !
Tìm x,biết :
a) 2x^2-7x+5=0
b) x(2x-5) - 4x+10=0
c) (x-5)(x+5) - x(x-2)=15
d) x^2(2x-3) - 12+8x=0
e) x(x - 1)+5x - 5=0
f) (2x-3)^2 - 4x(x - 1)=5
g) x(5 - 2x)+2x(x - 1)=13
h)2(x+5)(2x - 5)+(x - 1)(5 - 2x)=0
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
\(a,2x^2-7x+5=0\Leftrightarrow2x^2-2x-5x+5=0\Leftrightarrow2x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2,5\end{matrix}\right.\)\(b,x\left(2x-5\right)-4x+10=0\Rightarrow x\left(2x-5\right)-2\left(2x-5\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=2,5\end{matrix}\right.\)\(c,\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\Leftrightarrow x^2-25-x^2+2x-15=0\Leftrightarrow2x-40=0\Rightarrow2x=40\Rightarrow x=20\)\(d,x^2\left(2x-3\right)-12+8x=0\Rightarrow2x^3-3x^2-12+8x=0\Leftrightarrow2x^3+8x-3x^2-12=0\Leftrightarrow2x\left(x^2+4\right)-2\left(x^2+4\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+4\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\x^2+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2\\x^2=-4\end{matrix}\right.\Rightarrow x=1\)
Tìm x, biết:
a)x(2x-3)-(2x-1)(x+5)=17
b)(2x+5)^2+(3x-10)^2+2.(2x+5)(3x-10)=0
a: Ta có: \(x\left(2x-3\right)-\left(2x-1\right)\left(x+5\right)=17\)
\(\Leftrightarrow2x^2-3x-2x^2-10x+x+5=17\)
\(\Leftrightarrow-12x=12\)
hay x=-1
Bài 3: Tìm x biết:
a. \(2x+10=0\)
b. \(-2x+5=0\)
c. \(4-x=0\)
d. \(2x+1=0\)
e. \(x^2+2=0\)
f. \(2x+x=0\)
a)\(=>2x=-10=>x=-5\)
b)\(=>-2x=-5=>x=\dfrac{-5}{-2}=\dfrac{5}{2}\)
c)\(4-x=0=>x=4-0=4\)
d)\(=>2x=-1=>x=-\dfrac{1}{2}\)
e)\(=>x^2=-2\)=> x ko tồn tại
f)\(=>x\left(2+1\right)=0=>3x=0=>x=0\)
Tìm x:
a, 3x (4x -3) - 2x (5-6x) = 0
b, 5 (2x-3) + 4x (x-2) + 2x (3-2x) = 0
c, 3x (2-x) + 2x (x-1) = 5x (x+3)
d, 3x (x+1) - 5x (3-x) + 6(x2 + 2x + 3) = 0
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
d) \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
Mà \(14x^2+18>0\)nên pt vô nghiệm
Tìm x:
1, 2(x-3)2-(5-2x)2=3-2x2
2,1/2 (2x+1)2 - 1/2 ( 2x-1)2=0
3, (2x+5) (2x-5) -( 2x-5)2=0
bn vào câu hỏi tương tự tham khảo cách lm nhé
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi
sao nhìu... z p , đăq từq câu 1 thôy nha p