Những câu hỏi liên quan
YK
Xem chi tiết
YK
23 tháng 7 2018 lúc 10:53

A=\(\frac{x}{y}+\frac{y}{x}\)

Đặt \(\frac{x}{y}=a\left(a>0\right)\)

vì x,y>0 áp dụng bđt cô si

\(x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\) 

\(1\ge x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\)

\(\frac{1}{4}\ge\frac{x}{y}\)

\(0< a\le\frac{1}{4}\)

Có A=\(a+\frac{1}{a}\left(với0< a\le\frac{1}{4}\right)\)

A=​\(16a+\frac{1}{a}-15a\)

a>0 cô si

A\(\ge2\sqrt{16a\cdot\frac{1}{a}}-15\cdot\frac{1}{4}=\frac{17}{4}\)

D=XR x=y=1/2

Bình luận (0)
FE
Xem chi tiết
ND
21 tháng 10 2018 lúc 21:47

\(A=x+y+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=x+\frac{1}{4x}+y+\frac{1}{4y}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT AM-GM: \(A\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{y}{4y}}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)=2+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT Schwarz dạng Engel: \(A\ge2+\frac{1}{4}.\frac{4}{x+y}\ge3\) (Do \(x+y\le1\))

Vậy Min A = 3. Dấu "=" xảy ra <=> x=y=1/2

Bình luận (0)
NH
Xem chi tiết
CD
1 tháng 10 2018 lúc 18:40

ap dung bdt cauchy schwarz ta co

\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}>=\frac{\left(x-1+z-1+y-1\right)^2}{x+y+z}=\frac{1}{2}\)

vay min=1/2

Bình luận (0)
YK
Xem chi tiết
YK
23 tháng 7 2018 lúc 10:28

Vì a,b>0

A\(\ge2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}\cdot\sqrt{1+x^2y^2}\)

A\(\ge2\sqrt{\frac{1+x^2y^2}{xy}}\)

A\(\ge2\sqrt{\frac{1}{xy}+xy}\)

Đặt xy=a, a>0

Ta cs xy\(\le\frac{\left(x+y\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)

ĐK 0<a<\(\frac{1}{4}\)

\(\Leftrightarrow A\ge2\sqrt{\frac{1}{a}+a}\)

A\(\ge2\sqrt{16a+\frac{1}{a}-15a}\)

a>0, áp dụng bđt cô si

\(A\ge2\sqrt{2\sqrt{16a\cdot\frac{1}{a}}-\frac{15}{4}}\)

A\(\ge\sqrt{17}\)

Dấu = x ra a=b=0.5 

Bình luận (0)
NT
Xem chi tiết
VD
Xem chi tiết
HP
19 tháng 5 2017 lúc 16:34

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

Bình luận (0)
TN
19 tháng 5 2017 lúc 17:54

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

Bình luận (0)
HP
19 tháng 5 2017 lúc 20:30

x,y có dương đâu mà AM-GM rồi schwarz hay vậy Thắng ? 

Bình luận (0)
TQ
Xem chi tiết
NA
Xem chi tiết
TM
16 tháng 12 2017 lúc 11:44

\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)

Bình luận (0)
KK
Xem chi tiết
PT
13 tháng 7 2018 lúc 21:14

Sử dụng BĐT Am-Gm ta có: 

\(A=2\left(\frac{1}{x}+\frac{1}{y}\right)+\left(x+y\right)^2\ge4xy+\frac{4}{\sqrt{xy}}\)

\(\Rightarrow A\ge4xy+\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{xy}}\ge3\sqrt[3]{4xy.\frac{2}{\sqrt{xy}}.\frac{2}{\sqrt{xy}}}=6\sqrt[3]{2}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=y\\4xy=\frac{2}{\sqrt{xy}}\end{cases}}\Rightarrow x=y=\frac{1}{\sqrt[3]{2}}\)

Bình luận (0)