Những câu hỏi liên quan
CH
Xem chi tiết
NT
Xem chi tiết
BT
30 tháng 10 2021 lúc 14:05

ta có  \(\left(x-2\right)^3=x^3-6x^2+12x-8>x^3-6x^2+12x-27=y^3\)

ta có \(6x^2-12x+27>0vớimoix\)

\(=>-6x^2+12x-27< 0\)

\(=>y^3>x^3\)

mà x y nguyên nên y^3 nguyên =>\(y^3=\left(x-1\right)^3\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
NC
21 tháng 3 2020 lúc 18:09

Ta có: \(9x^2-8y^2=15⋮3\)

=> \(8y^2⋮3\)=> \(y^2⋮3\)=> \(y⋮3\)

Đặt y = 3 t ( t là số nguyên )

ta có: \(9x^2-8.9t^2=15\)

=> \(15=9x^2-8.9t^2⋮9\) vô lí

Vậy không tồn tại cặp số nguyên x; y.

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
PD
Xem chi tiết
EC
13 tháng 7 2020 lúc 9:12

9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0

<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0

<=> (3x + y - 1)2 = 37 - 2(y + 1)2

Ta có: (3x + y - 1)2 \(\ge\)0 => 37 - 2(y + 1)2 \(\ge\)0

=> (y + 1)2 \(\le\)37/2

Do y nguyên và (y + 1)2 là số chính phương

=> (y + 1)2 \(\in\){0; 1; 4; 9; 16}

=> y + 1 \(\in\){0; 1; -1; 2; -2; 3; -3; 4; -4}

Lập bảng 

y + 1 0 1 -1 2 -2 3 -3 4 -4
 y -1 0 -2 1 -3 2 -4 3 -5

Với y = -1 => (3x - 1 - 1)2 = 37 - 2(-1 + 1)2

<=> (3x - 2)2 = 37 

Do x nguyên và (3x - 2)2 là số chính phương

mà 37 là số nguyên tố => ko có giá trị y tm

.... (tự thay y vào)

bài trc sai

Bình luận (0)
 Khách vãng lai đã xóa
TK
3 tháng 6 2017 lúc 8:44

yx=98c99-23yx=0+35x6z6-y=a+b=6+2-3+35-9=31

Bình luận (0)
NN
13 tháng 7 2020 lúc 7:05

hdyebt7c>ZMX yTbftk 2y5

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
NQ
3 tháng 9 2021 lúc 22:18

ta có :

\(x^3-6x^2+12x-8-y^3=19\Leftrightarrow\left(x-2\right)^3-y^3=19\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+y\left(x-2\right)+y^2\right]=19\)

vì \(\left(x-2\right)^2+y\left(x-2\right)+y^2\ge0\) và là ước của 19 nên ta có :

\(\hept{\begin{cases}x-2-y=1\\\left(x+2\right)^2+y\left(x+2\right)+y^2=19\end{cases}\Leftrightarrow x-2=y+1\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=19}\)

\(\Leftrightarrow3y^2+3y-18=0\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)

hoặc \(\hept{\begin{cases}x-2-y=19\\\left(x+2\right)^2+y\left(x+2\right)+y^2=1\end{cases}\Leftrightarrow x-2=y+19\Rightarrow\left(y+19\right)^2+y\left(y+19\right)+y^2=19}\)

vô nghiệm .

Vậy \(\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NL
20 tháng 8 2021 lúc 21:29

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản

Bình luận (0)
MP
Xem chi tiết
LC
25 tháng 9 2019 lúc 21:33

Ta có: \(6x+5y+18=2xy\)

\(\Leftrightarrow6x+5y-2xy=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)

\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)

\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)

Dễ rồi

Bình luận (0)
NT
Xem chi tiết
NC
11 tháng 4 2020 lúc 20:51

Câu hỏi của kalista - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo!

Bình luận (0)
 Khách vãng lai đã xóa
HT
11 tháng 4 2020 lúc 20:59

-3xy+4y-6x=27

-3xy+4y-(6x+8)=19

y(4-3x)-2(4-3x)=19

(y-2)(4-3x)=19

Vì y;x là số nguyên => y-2;4-3x là số nguyên

                               =>  y-2;4-3x ∈ Ư(19)

Ta có bảng:

y-2119-1-19
4-3x191-19-1
x3211-17
y-51115/3 (loại)

Vậy cặp số nguyên (y;x) thỏa mãn là: (3;-5) ; (21;1) ; (1;11) .

Bình luận (0)
 Khách vãng lai đã xóa