Cho x, y ϵ N sao cho x+1 và y+2013 chia hết cho 6
CMR 4\(^x\)+x+y⋮6
Cho x , y thuộc N* sao cho x+1 và y+2013 chia hết cho 6
CMR : 4 ^x + x + y chia hết cho 6
Lời giải:
Vì $x+1, y+2013$ chia hết cho $6$ nên đặt $x+1=6k, y+2013=6m$ với $k,m\in\mathbb{N}^*$
Khi đó:
$4^{x}+x+y=4^{6k-1}+6k-1+6m-2013$
$=4^{6k-1}-2014+6(k+m)$
Vì $4\equiv 1\pmod 3$
$\Rightarrow 4^{6k-1}\equiv 1^{6k-1}\equiv 1\pmod 3$
$\Rightarrow 4^{6k-1}-2014\equiv 1-2014\equiv -2013\equiv 0\pmod 3$
$\Rightarrow 4^{6k-1}-2014\vdots 3$
Mà $4^{6k-1}-2014$ chẵn với mọi $k\in\mathbb{N}^*$
$\Rightarrow 4^{6k-1}-2014\vdots 6$
Kết hợp với $6k+6m\vdots 6$
$\Rightarrow 4^x+x+y=4^{6k-1}-2014+6k+6m\vdots 6$ (đpcm)
Cho x, y thuộc N sao cho: x + 1 và y + 2013 chia hết cho 6. CMR: 4^x + x + y chia hết cho 6
Cho x , y thuộc N sao cho x+1 và y+2013 chia hết cho 6
CMR : 4 ^x + x + y chia hết cho 6
Nếu x + 1 chia hết cho 6
=> x = 5
Nếu y + 2013 chia hết cho 6
=> y = 3
Vì x = 5 , y = 3
=>\(4^5\)+ 5 + 3 = \(4^x\)+ x + y
=> 512 + 5 + 3 = 520
520 k chia hết cho 6
=> Đề sai @@
Cho x,y thuộc N sao cho
x+1 và y+2013 chia hết cho 6
CMR : 4^x +x +y chia hết cho 6
Cho x,y thuộc N sao cho
x+x và y+2013 chia hết cho 6
CMR: (4x + x + y) chia hết cho 6
Cho x,y thuộc N sao cho
x + 1 và y + 2013 chia hết cho 6
CMR: \(4^x+x+y⋮6\)
Cho x, y ∈Nsao cho
x+1 và y+2013 chia hết cho 6
CMR : 4x +x + y chia hết cho 6
Đang cần gấp
Ta có: x+1 và y+2013 chia hết cho 6
=> x + 1 và y + 2013 thuộc B( 6)
=> B(6) = {0;6;12;18;......;}
=> x + 1 = {0;6;12;18;......;}
=> x = {-1;5;11;17;......}
=> y + 2013 ={0;6;12;18;......;}
=> y = {-2013;-2007;-2001;-1995;...........}
Cho x, y \(\in N\)sao cho
x+1 và y+2013 chia hết cho 6
CMR : 4x +x + y chia hết cho 6
2 , CMR \(2^{2^{2n}}\)+5 chia hết cho 7 với mọi n \(\in\)N
Cho x,y thuộc tập hợp N sao cho x+1 và y=2013 chia hết cho 6
Chứng minh rằng: 4x +x+y chia hết cho 6