Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NC
Xem chi tiết
TL
10 tháng 4 2020 lúc 14:40

Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\)

vì a,b, c là độ dài 3 cạnh của 1 tam giác => \(\hept{\begin{cases}b+c>a\\c+a>b\\a+b>c\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}\Rightarrow x,y,z>0}\)

và \(\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{x+y}{2}\\a=\frac{y+z}{2}\\b=\frac{x+z}{2}\end{cases}}\Rightarrow\frac{a}{b+c-a}=\frac{\frac{y+z}{2}}{x}=\frac{y+z}{2x}}\)

Tương tự: \(\hept{\begin{cases}\frac{b}{c+a-b}=\frac{x+z}{2y}\\\frac{c}{a+b-c}=\frac{x+y}{2z}\end{cases}}\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(=\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)

\(=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)

\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{2}\left(2+2+2\right)\) vì \(\hept{\begin{cases}\frac{y}{x}+\frac{x}{y}\ge2\\\frac{z}{x}+\frac{x}{z}\ge2\\\frac{y}{z}+\frac{z}{y}\ge2\end{cases}}\)

Dấu "=" khi và chỉ khi \(\hept{\begin{cases}\frac{y}{x}=\frac{x}{y}\\\frac{z}{x}=\frac{x}{z}\\\frac{y}{z}=\frac{z}{y}\end{cases}}\) và x,y,z>0

<=> x=y=z

=> a+b-c=c+a-b = a+b-c

<=> a+b+c-2a=a+b+c-2b=a+c+c-2c

<=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
GC
Xem chi tiết
CD
Xem chi tiết
DT
Xem chi tiết
DT
21 tháng 3 2019 lúc 21:30

Bài số ảo nhờ

kí tện

Dân game thủ

 kakakkakak tk cho bố m à

Bình luận (0)
TP
22 tháng 3 2019 lúc 20:03

Bài 1 : Đề cần có điều kiện a,b,c là các số thực dương

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(=1\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( vì \(a+b+c=1\))

Áp dụng BĐT Cauchy cho bộ 3 số dương ta có :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\end{cases}}\)

Khi đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=\frac{3\cdot3\cdot\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)

Hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(đpcm)

Bình luận (0)
KS
24 tháng 3 2019 lúc 7:49

Bài 2:

\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{cases}}}\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(=\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\)

\(=\frac{y}{2x}+\frac{z}{2x}+\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}\)

Dùng AM-GM tự làm nốt

Bình luận (0)
LV
Xem chi tiết
TT
4 tháng 9 2020 lúc 15:14

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(đpcm\right)\)

Bất đẳng thức được chứng minh 

Bình luận (0)
 Khách vãng lai đã xóa
HT
4 tháng 9 2020 lúc 15:16

Áp dụng BĐT Bunhiacopxki dạng cộng mẫu:

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi: \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
4 tháng 9 2020 lúc 15:17

Do \(a,b,c\) là độ dài ba cạnh tam giác , \(a,b,c>0\)

\(\Rightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}}\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(\frac{a^2}{b+c-a}+b+c-a\ge2\sqrt{\frac{a^2}{b+c-a}.\left(b+c-a\right)}=2a\)

\(\frac{b^2}{c+a-b}+c+a-b\ge2\sqrt{\frac{b^2}{c+a-b}.\left(c+a-b\right)}=2b\)

\(\frac{c^2}{a+b-c}+a+b-c\ge2\sqrt{\frac{a^2}{a+b-c}.\left(a+b-c\right)}=2c\)

Cộng vế với vế của các BĐT cùng chiều ở trên ta có :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\).

Vậy BĐT được chứng minh !

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
HH
Xem chi tiết
LD
26 tháng 11 2020 lúc 19:25

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
TD
27 tháng 5 2019 lúc 16:05

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

Bình luận (0)
TD
27 tháng 5 2019 lúc 16:07

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

Bình luận (0)
ZZ
30 tháng 5 2019 lúc 20:15

Cách khác của câu 1.

Ta có:

\(\hept{\begin{cases}a\ge\left|b-c\right|\\b\ge\left|a-c\right|\\c\ge\left|a-b\right|\end{cases}}\Rightarrow\hept{\begin{cases}a\ge\left(b-c\right)^2\\b\ge\left(a-c\right)^2\\c\ge\left(a-b\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2\ge a^2-\left(b-c\right)^2\left(1\right)\\b^2\ge b^2-\left(a-c\right)^2\left(2\right)\\c^2\ge c^2-\left(a-b\right)^2\left(3\right)\end{cases}}\)

Nhân vế theo vế của (1);(2);(3) ta có:

\(a^2b^2c^2\ge\left[a^2-\left(b-c\right)^2\right]\left[b^2-\left(a-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(\Rightarrow a^2b^2c^2\ge\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2\)

\(\Rightarrowđpcm\)

Bình luận (0)
CD
Xem chi tiết
KS
17 tháng 4 2019 lúc 11:06

\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}\Rightarrow}\hept{\begin{cases}a=\frac{z+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+x}{2}\end{cases}}\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}=\frac{y}{2x}+\frac{z}{2x}+\frac{x}{2y}+\frac{z}{2y}+\frac{y}{2z}+\frac{x}{2z}\)Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge2.\sqrt{\frac{y}{2x}.\frac{x}{2y}}+2.\sqrt{\frac{z}{2x}.\frac{x}{2z}}+2.\sqrt{\frac{y}{2z}.\frac{z}{2y}}=1+1+1=3\)

Dấu " = " xảy ra <=> a=b=c

Bình luận (0)
KS
17 tháng 4 2019 lúc 11:11

\(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{c+a}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

bạn tự c/m: \(\frac{a}{b}< \frac{a+c}{b+c}\left(b>a>0;c>0\right)\)

\(\Rightarrow\frac{a}{b+c}>\frac{2a}{a+b+c};\frac{b}{c+a}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1) và (2) 

\(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

đpcm

Bình luận (0)