thu gọn :
\(50^2-49^2+48^2-47^2+....+2^2-1^2\)
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
chứng tỏ rằng : 49+48/2+47/3+...+2/48+1/49=50.(1/2+1/3+...+1/50)
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
S=1/2+1/3+1/4+....+1/49+1/50,P=1/49+2/48+3/47+....+48/2+49/1,hay tim S/P
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50.S
VậyS/P=1/50
Cho S =1/2 +1/3 + 1/4+...+1/48+1/49+1/50
Và P = 1/49 + 2/48 + 3/47+...+ 48/2 + 49/1
Tính S / P
cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1
tính nhanh : 50^2 - 49^2 + 48^2 - 47^2 + ... + 2^2 - 1
\(50^2-49^2+48^2-47^2+...+2^2-1\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48-47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=99+95+...+3\)
\(=\frac{\left(99+3\right)\left[\left(99-3\right):4+1\right]}{2}\)
\(=\frac{102.\left(24+1\right)}{2}=\frac{102.25}{2}=1275\)
cho S = 1/2+1/3+1/4+...+1/49+1/50 và P = 1/49 +2/48+3/47+...+48/2+49/1.
tính S/P
Tính nhanh tong sau:A=2/2*3*4+2/3*4*5+.....+2/47*48*49+2/48*49*50
\(A=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{47\cdot48\cdot49}+\frac{2}{48\cdot49\cdot50}\)
\(A=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{47\cdot48}-\frac{1}{48\cdot49}+\frac{1}{48\cdot49}-\frac{1}{49\cdot50}\)
\(A=\frac{1}{2\cdot3}-\frac{1}{49\cdot50}\)
\(A=\frac{1}{6}-\frac{1}{2450}\)
\(A=\frac{611}{3675}\)
mong giúp đc bn.thk cho mk
Cho P = 1/2 + 1/3 + 1/4 + ... + 1/48 + 1/49 + 1/50 và Q = 1/49 +2/48 +3/47 + ... + 48/2 + 49/1.
Hãy tính P/Q
Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)
Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :
Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)
Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)
Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)
đưa phân số cuối lên đầu :
Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)
Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)
Q = 50 . A
Vậy \(\frac{P}{Q}=\frac{1}{50}\)