Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
IA
Xem chi tiết
TL
Xem chi tiết
TL
22 tháng 10 2019 lúc 18:48

Băng Băng 2k6 giúp vs

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
23 tháng 3 2021 lúc 19:24

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

Bình luận (0)
VB
Xem chi tiết
XO
5 tháng 1 2020 lúc 20:23

(x-2020)x - 1 - (x - 2020)x + 2019 = 0

=> (x - 2020)x - 1 .[(x - 2020)2020 - 1] = 0 

=> \(\orbr{\begin{cases}\left(x-2020\right)^{x-1}=0\\\left(x-2020\right)^{2020}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-2020=0\\\left(x-2020\right)^{2020}=1^{2020}\end{cases}\Rightarrow}\orbr{\begin{cases}x-2020=0\\x-2020=\pm1\end{cases}}}\)

=> \(x-2020\in\left\{0;1;-1\right\}\Rightarrow x\in\left\{2020;2021;2019\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AD
4 tháng 5 2019 lúc 20:14

ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa

Bình luận (1)
LD
4 tháng 5 2019 lúc 20:29

Tham khảo tại: Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến

Bình luận (1)
LC
Xem chi tiết
LC
31 tháng 10 2019 lúc 23:56

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
H24
31 tháng 10 2019 lúc 23:53

Cho xin cái đề ạ

Bình luận (0)
 Khách vãng lai đã xóa
FV
21 tháng 10 2020 lúc 22:39

hello

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
VA
2 tháng 1 2023 lúc 8:57

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)

\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)

Bình luận (0)