Những câu hỏi liên quan
TN
Xem chi tiết
PC
Xem chi tiết
HN
13 tháng 7 2016 lúc 20:51

a) Kết quả rút gọn xấu (+dài) nữa. (có thể đề sai)

b) 

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left[\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)

c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=\frac{\left(\sqrt{5}-\sqrt{2}\right)^2}{3}\)

Bình luận (0)
HN
14 tháng 7 2016 lúc 0:53

a) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right].\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{1}{2}-2=-\frac{3}{2}\)

Bình luận (0)
TH
Xem chi tiết
NT
Xem chi tiết
NT
7 tháng 6 2019 lúc 15:31

Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)

Bình luận (0)
NN
14 tháng 7 2019 lúc 15:19

\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=-\frac{3}{2}\)

Bình luận (0)
NN
14 tháng 7 2019 lúc 15:54

\(b,\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(7-5\right)\)

\(=-2\)

Bình luận (0)
HT
Xem chi tiết
NL
Xem chi tiết
NH
27 tháng 8 2020 lúc 16:43

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

Bình luận (0)
 Khách vãng lai đã xóa
NH
28 tháng 8 2020 lúc 9:53

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
KC
Xem chi tiết
IC
18 tháng 8 2017 lúc 21:12

Biến đổi tử ta được:

\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}\)

\(=\sqrt{5}+\sqrt{2}\)

Biến đổi mẫu ta được:

\(\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\sqrt{5}+\sqrt{2}\)

Suy ra biểu thức trên có giá trị bằng 1

Bình luận (0)
TT
18 tháng 8 2017 lúc 21:12

Tử = \(\sqrt{3}\)\(\sqrt{2}\)\(\sqrt{5}\)\(\sqrt{3}\)

Mẫu = \(\sqrt{2}\)\(\sqrt{5}\)

Kq =1

Bình luận (0)
KC
18 tháng 8 2017 lúc 21:18

cảm ơn các mann

Bình luận (0)
MT
Xem chi tiết
NL
Xem chi tiết