Những câu hỏi liên quan
NS
Xem chi tiết
CD
Xem chi tiết
NU
24 tháng 6 2018 lúc 9:18

a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=B\left(ĐPCM\right)\)

b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

Bình luận (0)
NU
24 tháng 6 2018 lúc 9:19

ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết
TN
1 tháng 5 2016 lúc 21:16

\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)

\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)

Bình luận (0)
DC
1 tháng 5 2016 lúc 21:17

Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006

=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)

=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)

=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)

=>A=1/1004+1/1005+.....+1/2006

Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )


 

Bình luận (0)
TM
1 tháng 12 2016 lúc 21:44

đúng ko

Bình luận (0)
HL
Xem chi tiết
DV
28 tháng 3 2017 lúc 11:04

????????

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 3 2019 lúc 5:21

Câu 2a:

Ta có :

\(\frac{1}{101}>\dfrac{1}{150}\)

\(\frac{1}{102}>\dfrac{1}{150}\)

\(....................\)

\(\dfrac{1}{150}=\dfrac{1}{150}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+......+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+......+\dfrac{1}{150}\) ( có 50 số hạng )

\(\Rightarrow A>\dfrac{1}{150}.50\)

\(\Rightarrow A>\dfrac{1}{3}\) ( 1 )

Ta có :

\(\dfrac{1}{101}< \dfrac{1}{100}\)

\(\dfrac{1}{102}< \dfrac{1}{100}\)

\(.................\)

\(\dfrac{1}{150}< \dfrac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+....+\frac{1}{150}< \dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\) ( có 50 số hạng )

\(\Rightarrow A< \dfrac{1}{100}.50\)

\(\Rightarrow A< \dfrac{1}{2}\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{1}{3}< A< \dfrac{1}{2}\)

\(\Rightarrow\)Điều phải chứng minh

Bình luận (1)
RD
23 tháng 3 2019 lúc 7:29

Câu 2b với 2c tương tự nên mk sẽ làm 2b nha

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\left(đpcm\right)\)

Bình luận (1)
H24
22 tháng 3 2019 lúc 22:49

Ribi Nkok Ngok Khôi Bùi Nguyen Nguyễn Thành Trương nguyễn ngọc dinh buithianhtho svtkvtm Phùng Tuệ Minh Rồng Đom Đóm Akai Haruma

Bình luận (0)
PD
Xem chi tiết
VH
18 tháng 5 2022 lúc 19:57

đáp án B nhá

 

Bình luận (0)
NT
18 tháng 5 2022 lúc 19:57

______________________________________________________

                    Chắc là ý : B

Bình luận (0)
DN
18 tháng 5 2022 lúc 19:58

Dãy số trên có số số hạng là:

(2007-1):2+1=1004 ( số)

Có số cặp là:

1004:2=502 ( cặp)

Lại có mỗi cặp có g.trị là 2

 Kết quả của dãy tính trên là:

502.2=1004

=> Chọn đáp án B

Bình luận (0)
HP
Xem chi tiết
NA
18 tháng 5 2021 lúc 21:36

ý B nha my friend

Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 7 2021 lúc 9:22

đáp 

án 

c.1004

Bình luận (0)
 Khách vãng lai đã xóa