Chương III : Phân số

H24

1. Vẽ \(\widehat{AOB}\) nhọn. Vẽ tia OC nằm giữa tia OA và OB. Vẽ tia OM sao cho OA là tia phân giác của \(\widehat{MOC}\). Vẽ tia ON sao cho OB là tia phân giác của \(\widehat{NOC}\). Chứng minh \(\widehat{MON}=2\widehat{AOB}\)

2.

a) Cho \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\). Chứng minh: \(\frac{1}{3}< A< \frac{1}{2}\)

b) Cho \(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\). Chứng minh: \(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

c) Rút gọn: \(A=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}}\)

NT
23 tháng 3 2019 lúc 5:21

Câu 2a:

Ta có :

\(\frac{1}{101}>\dfrac{1}{150}\)

\(\frac{1}{102}>\dfrac{1}{150}\)

\(....................\)

\(\dfrac{1}{150}=\dfrac{1}{150}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+......+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+......+\dfrac{1}{150}\) ( có 50 số hạng )

\(\Rightarrow A>\dfrac{1}{150}.50\)

\(\Rightarrow A>\dfrac{1}{3}\) ( 1 )

Ta có :

\(\dfrac{1}{101}< \dfrac{1}{100}\)

\(\dfrac{1}{102}< \dfrac{1}{100}\)

\(.................\)

\(\dfrac{1}{150}< \dfrac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+....+\frac{1}{150}< \dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\) ( có 50 số hạng )

\(\Rightarrow A< \dfrac{1}{100}.50\)

\(\Rightarrow A< \dfrac{1}{2}\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{1}{3}< A< \dfrac{1}{2}\)

\(\Rightarrow\)Điều phải chứng minh

Bình luận (1)
RD
23 tháng 3 2019 lúc 7:29

Câu 2b với 2c tương tự nên mk sẽ làm 2b nha

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\left(đpcm\right)\)

Bình luận (1)
H24
22 tháng 3 2019 lúc 22:49

Ribi Nkok Ngok Khôi Bùi Nguyen Nguyễn Thành Trương nguyễn ngọc dinh buithianhtho svtkvtm Phùng Tuệ Minh Rồng Đom Đóm Akai Haruma

Bình luận (0)
H24
23 tháng 3 2019 lúc 5:51

Chieu nay to giup

Bình luận (4)
PM
23 tháng 3 2019 lúc 6:13

Trưa đi học về tớ làm giúp cho.

Bình luận (4)
RD
23 tháng 3 2019 lúc 18:33

Ta chứng minh:\(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào bài toán

Ta có:\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)\(\Rightarrow A=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)

Bình luận (0)

Các câu hỏi tương tự
DP
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
DT
Xem chi tiết
BD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết