Tìm số dư của 2(3+3^2+3^3...+3^2006)+2 chia 7 dư mấy
cho A=2+2^2+2^3+...+2^2006
tìm số dư khi lấy A chia cho 7
tham khảo đi
Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B
bài 1) Một số tự nhiên chia cho 3 dư 2 ,chia cho 7 dư 6 .Tìm số dư của phép chia a cho 21.
bài 2) Tìm số A nhỏ nhất có 6 ước
bài 3) Cho 2006 đường thẳng ,trong đó bất kì 2 đường thẳng nào cũng cất nhau .Không có 3 đường thẳng nào đồng quy .Tính số giao điểm của chúng.
(Gợi ý: Ai trình bày rõ ràng thì tui tick. Nhớ hết 3 bài luôn đó)
Tìm 1 số chia 7 dư 3,chia17 dư 12,chia 23 dư 2.Hỏi số đó chia cho 2737 dư mấy
Theo đầu bài, ta có:
A=7.a+4
=17.b+3
=23.c+11 (a,b,c ∈∈ N)
nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
A+150=7.a+4+150=7.a+7.22=7.(a+22)
=17.b+3+150=17.b+17.9=17.(b+9)
=23.c+11+150=23.c+23.7=23.(c+7)
như vậy A+150 đồng thời chia hết cho 7,17 và 23. nhưng 7, 17 và 23 là ba sô đôi một nguyên tố cùng nhau, suy ra A+150 chia hết cho 7.17.13=2737
vậy A+150=2737k (k=1;2;3;4...)
suy ra: A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k'+2587
do 2587<2737 nên 2587 là số dư trong phép chia số đã cho A cho 2737
Gọi số đã cho là A, theo đề bài ta có:
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7,17 và 23.
Nhưng 7,17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) 7. 17 . 23 hay ( A + 39 ) 2737
Suy ra A + 39 = 2737. k suy ra A = 2737. k - 39 = 2737.( k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737
1/ Tìm số tự nhiên a nhỏ nhất sao cho chia a cho 3, cho 5, cho 7 được số dư lần lượt là 2, 3, 4 ?
2/ Một số tự nhiên chia cho 7 dư 5, chia cho 13 dư 4. Hỏi số đó chia 91 dư mấy?
a) chứng tỏ rằng A=1+2+22+23+...+22006 chia hết cho 7
b) tìm số dư trong phép chia 22006 cho 7
a) Chứng tỏ rằng A=1+2+22+23+...+22006 chia hết cho 7
b) Tìm số dư trong phép chia 22006 cho 7
(a):Chứng tỏ rằng A=1+2+22+23+...+22006chia hết cho 7
(b):Tìm số dư trong phép chia 22006 cho7
(a) Chứng tỏ rằng A= 1 + 2 + 22 + 23 +...+ 22006 chia hết cho 7
(b) Tìm số dư trong phép chia 22006 cho 7
a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{2004}.7\)
\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7
b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)
Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)
=>22006 chia 7 dư 4
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
số c chia 3 dư 1 , chia 5 dư 3 , chia 7 dư 2 . hỏi c chia 105 dư mấy