Những câu hỏi liên quan
Xem chi tiết
NM
3 tháng 12 2021 lúc 9:55

\(a,\) Gọi 2 số đó là \(2n+1;2n+3\left(n\in N\right)\)

Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)

\(\Rightarrow2n+1⋮d;2n+3⋮d\\ \Rightarrow2n+3-2n-1⋮d\\ \Rightarrow2⋮d\)

Mà \(d\) lẻ nên \(d=1\)

Vậy \(ƯCLN\left(2n+1,2n+3\right)=1\left(đpcm\right)\)

\(b,\) Gọi \(d=ƯCLN\left(2n+5,3n+7\right)\)

\(\Rightarrow2n+5⋮d;3n+7⋮d\\ \Rightarrow2\left(3n+7\right)-3\left(2n+5\right)⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+5,3n+7\right)=1\left(đpcm\right)\)

Bình luận (4)
PA
Xem chi tiết
NQ
7 tháng 11 2015 lúc 8:44

a) 2 số có dạng: 2k +1 ; 2k + 3

UC(2k + 1 ; 2k + 3) = UC(1;3) = 1

=> dpcm

b) Gọi UCLN(2n + 5 ;3n + 7) = d

2n +  5 chia hết cho d 

=> 6n + 15 chia hết cho d

3n + 7 chia hết cho d

=> 6n + 14 chia hết cho d

Mà UCLN(6n + 14 ; 6n + 15) = 1 <=> d = 1

=> DPCM

Bình luận (0)
H24
Xem chi tiết
LD
19 tháng 12 2017 lúc 19:40

a, Ta phải chứng minh  ƯCLN(2n+1 ; 2n+3)=1

đặt : ƯCLN(2n+1;2n+3)=d

Suy ra : 2n+1 chia hết cho d 

           2n+3 chia hết cho d

Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d 

 => d thuộc Ư(2)={1;2}

loại d=2 (vì d khác 2)

=> d = 1

Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau

b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p

Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p

       3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p

Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p

=>p= 1 

vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Bình luận (0)
GL
Xem chi tiết
FZ
20 tháng 11 2015 lúc 16:36

a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).

Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.

Vậy (2n + 3) – ( 2n + 1) chia hết cho d

Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau. 

Bình luận (0)
NN
20 tháng 11 2015 lúc 16:35

dài quá bn tick mình mới làm

Bình luận (0)
VQ
20 tháng 11 2015 lúc 16:38

a) gọi hai số lẻ liên tiếp là a ;a+2

gọi UCLN(a;a+2) là d ta có:

a chia hết cho d 

a+2 chia hết cho d

=>(a+2)-a chia hết cho d

=>2 chia hết cho d

=>d=1;2

nếu d=2 thì a ko chia hết cho bởi a lẻ

=>d=1

=>UCLN(...)=1

=>ntcn

b)gọi UCLN(2n+5;3n+7) là d

ta có :

2n+5 chia hết cho d=>3(2n+5) chia hết cho d =>6n+15 chia hết cho d\

3n+7 chia hết cho d =>2(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(...)=1

=>ntcn

Bình luận (0)
MA
Xem chi tiết
TN
Xem chi tiết
NT
6 tháng 8 2021 lúc 8:39

b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)

Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)

3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2) 

Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
29 tháng 8 2021 lúc 9:55

Giúp mình với mn

 

Bình luận (0)
NM
29 tháng 8 2021 lúc 9:59

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

Bình luận (0)
H24
29 tháng 8 2021 lúc 10:02

a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)

\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)

d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)

Bình luận (0)
NS
Xem chi tiết
NT
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

Bình luận (0)
KD
Xem chi tiết

k hộ mik nhéundefinedundefined

Bình luận (0)
 Khách vãng lai đã xóa

TL

undefinedundefinedundefinedk hộ mik

Hoktot~

Bình luận (0)
 Khách vãng lai đã xóa
NT
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

Bình luận (0)