Tìm x biết
a)x(x+2)-2x^2=4
b)2.(x+3)-3(x+4)=1
Mọi người giúp mk với ạ
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
Tìm x, biết
a) / 3x-2 / = 4
b) / 5x-3 / = / 7-x /
c) 2 - / x-1 /- 3x = 7
d) / 2x+3 / + 2x = -4
giúp em zới gấp lắm rồi ạ!!! ;-;
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
tìm x, biết
a,/x-3/+/x+2/=4
b,/2x-4/+/6x-18/=21
\(a,\text{Với }x< -2\Rightarrow3-x-x-2=4\\ \Rightarrow-2x=3\Rightarrow x=-\dfrac{3}{2}\left(ktm\right)\\ \text{Với }-2\le x< 3\Rightarrow3-x+x+2=4\\ \Rightarrow0x=-1\Rightarrow x\in\varnothing\\ \text{Với }x\ge3\Rightarrow x-3+x+2=4\\ \Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\left(ktm\right)\)
Vậy \(x\in\varnothing\)
\(b,\text{Với }x< 2\Rightarrow4-2x+18-6x=21\\ \Rightarrow22-8x=21\Rightarrow x=\dfrac{1}{8}\left(tm\right)\\ \text{Với }2\le x< 3\Rightarrow2x-4+18-6x=21\\ \Rightarrow-4x+14=21\Rightarrow x=-\dfrac{7}{4}\left(ktm\right)\\ \text{Với }x\ge3\Rightarrow2x-4+6x-18=21\\ \Rightarrow8x=43\Rightarrow x=\dfrac{43}{8}\left(tm\right)\)
Vậy \(x\in\left\{\dfrac{1}{8};\dfrac{43}{8}\right\}\)
Tìm nghiệm nguyên dương của phương trình: x=2x-1
Mọi người giúp mình với ạ !
3) tìm x biết
a) \(\sqrt{x+9}=7\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\)
lm nhanh giúp mk nhé mk đang cần gấp
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)
\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)
\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)
\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)
\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)
\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)
\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)
\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)
bài 1: tìm đa thức M biết
a, \(M+x^2\)\(-3xy-y^2\)=\(2x^2\) \(-y^2+xy\)
b,\(x^2y^2-2x^2y^3+2x^2-y^3-P=x^2y^3-3x^2y^2-x^2\)
bài 2: tìm nghiệm của các đa thức sau
a, \(5\left(x-2\right)-2\left(x+3\right)\)
b, \(5x^2-125\)
c,\(2x^2-x-3\)
giúp mik vs ạ
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
Tìm x , biết
a, x+x^2-x^3-x^4= 0
b, x^4 + 27 + (x+3) (x-9)=0
làm ơn giải chi tiết giúp mik vs ạ
a
\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b
x^3 chứ: )
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
Tìm x e Z biết
a, | -5 | + | x - 1 | = | 7 |
b, 2 . | 2x - 4 | - | - 4 | = | - 50 |
giúp mình với nha mọi người !
Thanks !
a) Ta có: \(\left|-5\right|+\left|x-1\right|=\left|7\right|\)
\(\Leftrightarrow\left|x-1\right|+5=7\)
\(\Leftrightarrow\left|x-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-1\right\}\)
b) Ta có: \(2\cdot\left|2x-4\right|-\left|-4\right|=\left|-50\right|\)
\(\Leftrightarrow4\cdot\left|x-2\right|-4=50\)
\(\Leftrightarrow4\cdot\left|x-2\right|=54\)
\(\Leftrightarrow\left|x-2\right|=\dfrac{27}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=\dfrac{27}{2}\\x-2=-\dfrac{27}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{31}{2}\left(loại\right)\\x=-\dfrac{23}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: \(x\in\varnothing\)
a, | -5 | + | x-1 | = | 7 |
5 + | x - 1 | = 7
| x - 1 | = 2
TH1 x -1 = 2
x = 3
TH2 x -1 = -2
x= -1
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm