Cho \(x^2+y^2+z^2=xy+yz+zx\) và \(x^{2016}+y^{2016}+z^{2016}=3^{2017}\)
Tính \(x,y,z\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
2) cho xyz=2016
chứng minh rằng 2016x/xy+2016x+2016 + y/yz+y+2016 + z/xz+z+1 = 1
tìm x, y, z biết x^2+y^2+z^2=xy+yz+zx và x^2016+y^2016+z^2016=3^2016
mình đang cần gấp. ai biết thì làm hộ mình nha. thanks
Ta có \(x^2+y^2+z^2\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z
Bạn áp dụng vào nhé.
Ngọc cứ làm tắt thì vài người hiểu chứ vài bạn không biết đâu :)
Ta có :
\(x^2+y^2+z^2=xy+xz+yz\)
\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Rightarrow2\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow x^2+y^2-2xy+y^2+z^2-2yz+x^2+z^2-2xz=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\)
\(\Rightarrow x-y=x-z=y-z=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}\)
Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2016}\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}=\frac{3^{2016}}{3}=3^{2015}\)
\(\Rightarrow x=y=z=\sqrt[2016]{3^{2015}}=\sqrt[2016]{\frac{3^{2016}}{3}}=\frac{3}{\sqrt[2016]{3}}\)
Mình chưa học cách làm như thế. Chẳng hiểu gì hết. các bạn có thể làm theo cách khác không?
cho x+y+z=2016 tinh gia tri A=( xy+2016 z)(yz+2016x)(zx+2016y)/(x+y)^2(y+z)^2(z+x)^2
cho x+y+z=2016 tinh gia tri a=( xy+2016 z)(yz+2016x)(zx+2016y)/(x+y)^2(y+z)^2(z+x)^2
Ta có: \(\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)\\ =\left(xy+\left(x+y+z\right)z\right)\left(yz+\left(x+y+z\right)x\right)\left(zx+\left(x+y+z\right)y\right)\\ =\left(xy+zx+zy+z^2\right)\left(yz+x^2+xy+xz\right)\left(zx+xỹ+y^2+yz\right)\\ =\left(y+z\right)\left(x+z\right)\left(x+z\right)\left(y+x\right)\left(z+y\right)\left(x+y\right)\\ =\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2\\ \Rightarrow\frac{\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =\frac{\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =1\)
cho x+y+z=2016 tính M=\(\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2+xy-yz-zx}\)
\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)
Đặt \(N=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)
(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là \(x^2+y^2+z^2-xy-yz-zx\) nhé!
cho x,y,z là các số thực dương thỏa mãn : xy+yz+zx=2016
c/m : \(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\)
\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)
\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)
\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)
Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)
Giải
Ta có:
\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)
xí bài này nhé, lát nữa hoặc mai giải
cho x+y+z =0 va xy+yz+zx=0 Tính S=(x-1)^2015+(y-1)^2016+(z-1)^2017
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)