Những câu hỏi liên quan
CN
Xem chi tiết
H24
13 tháng 10 2019 lúc 15:33

\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)

Bình luận (0)
H24
13 tháng 10 2019 lúc 15:38

\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)

\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)

\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)

\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)

\(=2\sqrt{3}\)

Bình luận (0)
H24
13 tháng 10 2019 lúc 15:55

\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+5}\right):2\sqrt{5}\)

\(=\left(5\cdot\frac{\sqrt{1}}{\sqrt{5}}+\frac{1}{2}\sqrt{4.5}-\frac{5}{4}\sqrt{\frac{4+25}{5}}\right)\cdot\frac{1}{2\sqrt{5}}\)

\(=\left(\frac{5\sqrt{5}}{\sqrt{5}.\sqrt{5}}+\frac{1}{2}.2\sqrt{5}-\frac{5}{4}\sqrt{\frac{29}{5}}\right)\cdot\frac{\sqrt{5}}{2\cdot\sqrt{5}\cdot\sqrt{5}}\)

\(=\left(\frac{5\sqrt{5}}{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}}{\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(\sqrt{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}\sqrt{5}}{\sqrt{5}\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(2\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{145}}{5}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(2\sqrt{5}-\frac{\sqrt{145}}{4}\right)\cdot\frac{\sqrt{5}}{10}\)

Bình luận (0)
BV
Xem chi tiết
H24
6 tháng 11 2017 lúc 21:33

tính bình thường thôi

Bình luận (0)
NH
29 tháng 10 2017 lúc 8:38

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B

Bình luận (0)
NT
29 tháng 10 2017 lúc 8:53

bai nay minh chua hoc den nen khong the giai

Bình luận (0)
BS
Xem chi tiết
NT
9 tháng 7 2019 lúc 19:04

\(\frac{\sqrt{7}+7}{\sqrt{7}+1}-\frac{\sqrt{7}-\sqrt{14}}{\sqrt{2}-1}+\frac{2\sqrt{35}-2\sqrt{7}}{1-\sqrt{5}}\)

\(=\frac{\sqrt{7}\left(1+\sqrt{7}\right)}{\sqrt{7}+1}-\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{\sqrt{2}-1}+\frac{2\sqrt{7}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\)

\(=\frac{\sqrt{7}\left(1+\sqrt{7}\right)}{\sqrt{7}+1}+\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\frac{2\sqrt{7}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\)

\(=\sqrt{7}+\sqrt{7}-2\sqrt{7}\)

\(=0\)

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
BC
Xem chi tiết
AT
10 tháng 12 2016 lúc 22:42

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

Bình luận (0)
KT
Xem chi tiết
NA
Xem chi tiết
SL
Xem chi tiết