Những câu hỏi liên quan
NN
Xem chi tiết
ZZ
1 tháng 4 2020 lúc 21:56

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
LD
4 tháng 7 2017 lúc 11:17

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
Bình luận (0)
LD
4 tháng 7 2017 lúc 10:57

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

Bình luận (0)
NP
Xem chi tiết
LC
5 tháng 7 2017 lúc 11:14

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

Bình luận (0)
VV
Xem chi tiết
MT
17 tháng 6 2015 lúc 9:52

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

Bình luận (0)
HD
17 tháng 6 2015 lúc 9:56

trieu dang làm đúng rùi

Bình luận (0)
NU
Xem chi tiết
LK
5 tháng 8 2018 lúc 22:19

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Bình luận (0)
NU
6 tháng 8 2018 lúc 10:57

Mik cảm ơn bn nhìu nha!!!!^-^!!!

Bình luận (0)
NV
Xem chi tiết
KR
13 tháng 11 2016 lúc 9:28

a) 5n + 6 chia hết cho 5n + 1

5n + 1 + 5 chia hết cho 5n + 1

=> 5 chia hết cho 5n + 1

=> 5n + 1 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}

Xét 4 trường hợp, ta có '

5n + 1 = 1 => 5n = 0  => n = 0

5n + 1 = -1 => 5n = -2 => n = -2/5

5n + 1 = 5 => 5n = 4 => n = 4/5 

5n + 1 = -5 => 5n = -6 => n = -6/5 

b)

2n + 3 chia hết cho 3n + 1

3(2n + 3 ) chia hết cho 3n + 1

6n + 9 chia hết cho 3n + 1

6n + 2 + 7 chia hết cho 3n + 1

2(3n + 1) + 7 chia hết cho 3n + 1

=> 7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}

Còn lại làm giống bài a nha 

Bình luận (0)
NV
13 tháng 11 2016 lúc 9:31

sao lại là -1 

-5

-7

bạn giải thích mình cái

Bình luận (0)
LB
13 tháng 11 2016 lúc 9:33

a) 5n + 6 chia hết cho 5n + 1

5n + 1 + 5 chia hết cho 5n + 1

=> 5 chia hết cho 5n + 1

=> 5n + 1 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}

Xét 4 trường hợp, ta có '

5n + 1 = 1 => 5n = 0  => n = 0

5n + 1 = -1 => 5n = -2 => n = -2/5

5n + 1 = 5 => 5n = 4 => n = 4/5 

5n + 1 = -5 => 5n = -6 => n = -6/5 

b)

2n + 3 chia hết cho 3n + 1

3(2n + 3 ) chia hết cho 3n + 1

6n + 9 chia hết cho 3n + 1

6n + 2 + 7 chia hết cho 3n + 1

2(3n + 1) + 7 chia hết cho 3n + 1

=> 7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}

Bình luận (0)
DL
Xem chi tiết
NT
8 tháng 11 2021 lúc 20:43

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

Bình luận (0)
LT
Xem chi tiết
LT
Xem chi tiết
NT
26 tháng 2 2022 lúc 8:29

a: \(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

b: \(\Leftrightarrow3n-3+8⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)

c: \(\Leftrightarrow4n+6+4⋮2n+3\)

\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)

hay \(n\in\left\{-1;-2\right\}\)

d: \(\Leftrightarrow15n+18⋮3n+1\)

\(\Leftrightarrow15n+5+13⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)

hay \(n\in\left\{0;4\right\}\)

Bình luận (0)
DH
Xem chi tiết