Cho 3 số a,b,c khác 0 biết a^2c=b^2a=c^2b
Chứng minh a=b=c
Gấp lắm nhờ mấy nhà toán học giúp với ạ
Cho 3 số a,b,c khác 0 biết a^2c=b^2a=c^2b
Chứng minh a=b=c
Mọi người giúp đỡ đang gấp lắm ạ
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Các anh chị có thể giúp em giải bài toán này được ko ạ!
Bài toán1: Cho x/y=y/z=z/x. So sánh x,y,z biết x+y+z khác 0
Bài toán 2: Chứng minh răng:
a) nếu a+z/a-z=b+3/b-3 thì a/z=b/3
b) nếu a-c/c-b=a/b thì 1/c=1/2 (1/a+1/b)
c) nếu a/b=c/d thì 2a^2016 + 5b^2016/2c^2016+5d^2016 = (a+b)^2016/(c+d)^2016
x/y=y/z=z/x
=> x*z = 2*y = x*y = 2*z
Ta có :
x*z = x*y
=> z=y
Ta có :
x*z = 2*y = y*y
Mà y = z (cmt)
=> x*z = y*z
=>x=y
Mà y = z (cmt)
=> x=y=z
MẤY BẠN GIẢI NHANH GIÚP MÌNH MẤY BÀI TOÁN KHÓ NÀY NHA, MAI MÌNH ĐẾN HẠNG NỘP RỒI:
a) Cho a,b,c >0 thỏa 1/a+1/c=2/b. Chứng ming (a+b)/(2a-b)+ (b+c)/(2c-b) >=4
b) cho a,b >0 và a+b<=1. Chứng minh 1/(a^2+ab) + 1/(b^2+ab) >=4
c) cho a,b,c>0. Chứng minh (a+b+c)(a^2+b^2+c^2)>=9abc
cho 1/a+1/b+1/c=0 với a,b,c khác 0 và M=b^2c^2/a+c^2a^2/b+a^2b^2/c. chứng minh M=3abc
giúp mình với. cám ơn nhiều
Đề bài : Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(a,b,c\ne0\right)\)và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
Chứng minh M=3abc.
Trước tiên, ta chứng minh bài toán phụ : Cho x+y+z=0 . Chứng minh \(x^3+y^3+z^3=3xyz\)
Giải bài toán phụ như sau : Ta có : \(x+y+z=0\Rightarrow z=-\left(x+y\right)\Rightarrow z^3=-\left[x^3+y^3+3xy\left(x+y\right)\right]\)
\(\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy\left(-z\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Áp dụng vào bài đã cho, ta suy ra : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Do đó : \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{a^2b^2c^2}{a^3}+\frac{a^2b^2c^2}{b^3}+\frac{a^2b^2c^2}{c^3}=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^2b^2c^2.\frac{3}{abc}=3abc\)Vậy \(M=3abc\)(đpcm)
Không có chi :))
Chúc bạn học tốt ! ^.^
Cho biểu thức A= 1/(3+2a+b+ab) + 1/(3+2b+c+bc) + 1/(3+2c+a+ca). Biết a,c,b là các số thực làm cho A xác định và a+b+c+ab+ac+bc+abc=0. Tính gía trị của A.
Mn giúp mk với, mk đang cần gấp lắm sắp thi hsg rồi.
Cho 3 stn khác nhau a,b,c với 0<a,b,c nhỏ hơn hoặc bằng 9.Chứng minh rằng tổng tất cả các số có 3 chữ số khác nhau tạo bởi a,b,c chia hết cho 27
Em cần gấp lắm ạ giúp em!!!!
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR \(\frac{a^2b}{2a+b}+\frac{b^2c}{2b+c}\) \(+\frac{c^2a}{2c+a}\)
Giúp mk với mấy bn, mai mk thi rồi mà ko biết giải, Huhu, cầu xin giúp đỡ
Giúp mk vs mk đang cần gấp
Cho 2x+2z-x/a=2z+2x-y/b=2x+2y-z/c.Với a,b,c khác 0 ;2a+2b khác c,2b+2c khác a,2a+2c khác b
Cmr: x/2b+2c-a=y/2c+2a-b=z/2a+2b-c
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh