Phân tích đa thức thành nhân tử
x(x+3) - 5x( x - 5 ) -( x + 3 )
phân tích các đa thức sau thành phân tửx2 + 5x3 + x2y = x2 ( + 5x + y) ( cho xem cách làm ạ, đừng làm tắt )
Bạn chuyển tất cả hạng tử từ vế phải sang vế trái ta được
\(^{x^2+5\text{x}^3+x^2y=5\text{x}^3+x^2y}\)
\(x^2+5\text{x}^3+x^2y-5\text{x}^3-x^2y=0\)
Rút gọn ta được
\(x^2=0\)
\(=>x=0\)
tick cho mình nha
Phân tích đa thức thành nhân tử
x^2 - axy - bxy + aby^2
x2 - axy - bxy + aby2
= ( x2 - axy) - ( bxy - aby2)
= x( x-ay) - by( x - ay)
= ( x-ay)( x - by)
Phân tích đa thức thức thành nhân tử : (x – 5)(x – 1)(x + 3)(x + 7) + 60
\(\left(x-5\right)\left(x-1\right)\left(x+3\right)\left(x+7\right)+60\)
\(=\left(x^2+2x-35\right)\left(x^2+2x-3\right)+60\)
\(=\left(x^2+2x\right)^2-38\left(x^2+2x\right)+105+60\)
\(=\left(x^2+2x\right)^2-3\left(x^2+2x\right)-35\left(x^2+2x\right)+165\)
\(=\left(x^2+2x-3\right)\left(x^2+2x-35\right)\)
\(=\left(x+3\right)\left(x-1\right)\left(x+7\right)\left(x-5\right)\)
phân tích đa thức thành nhân tử
(x^2+4x-3)^2-5x.(x^2+4x-3)+6x^2
\(=\left(x^2+4x-3\right)^2-5\left(x^2+4x-3\right)+6x^2\)
\(=x^4+16x^2+9+8x^3-24x-6x^2-5x^2-20x+15+6x^2\)
\(=x^4+8x^3+11x^2-44x+24\)
\(=\left(x^4-x^3\right)+\left(9x^3-9x^2\right)+\left(20x^2-20x\right)-\left(24x-24\right)\)
\(=x^3\left(x-1\right)+9x^2\left(x-1\right)+20x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+9x^2+20x-24\right)\)
Phân tích đa thức thành nhân tử : 5x^2 - 4(x^2 - 2x + 1) - 5
\(5x^2-4\left(x^2-2x+1\right)-5=\left(5x^2-5\right)-4\left(x-1\right)^2=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
\(= \)\(5x^2-4x^2+8x-4-5\)
\(=\)\(x^2+8x-9\)
\(=x^2+9x-x-9\)
\(=(x-1)(x+9)\)
\(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
Phân tích đa thức thành nhân tử : (x2 + 5x – 3)(x2 + 5x – 5) – 15
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)
\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)
\(=x\left(x+5\right)\left(x^2+5x-8\right)\)
Tách hạng tử để phân tích đa thức thành nhân tử:
a) x²+x-2
b) 2x²+5x+3
c) 3x²+5x-2
a) x2+x-2
= x2-x+2x-2
= x(x-1)+2(x-1)
= (x+2)(x-1)
b) 2x2+5x+3
= 2x2+2x+3x+3
= 2x(x+1)+3(x+1)
= (2x+3)(x+1)
c) 3x2+5x-2
= 3x2+6x-1x-2
= 3x(x+2)-1(x+2)
= (3x-1)(x+2)
phân tích đa thức thành nhân tử
{x+3}{x+4}{x+5}{x+6}-24
(x+3)(x+4)(x+5)(x+6)-24=[(x+3)(x+6)][(x+4)(x+5)]-24
=(x2+6x+3x+3.6)(x2+5x+4x+5.4)-24
=(x2+9x+18)(x2+9x+20)-24
=(x2+9x+18)(x2+9x+18+2)-24 (*)
đặt x2+9x+18 là t (1)
(*) trở thành
t(t+2)-24=t2+2t-24=t2-4t+6t-24
=(t2-4t)+(6t-24)
=t(t-4)+6(t-4)
=(t-4)(t+6) (2)
thay (2) vào (1), ta được:
(x+3)(x+4)(x+5)(x+6)-24=(x2+9x+18-4)(x2+9x+18+6)
=(x2+9x+14)(x2+9x+24)
=(x2+7x+2x+14)(x2+9x+24)
=[(x2+7x)+(2x+14)](x2+9x+24)
=x(x+7)+2(x+7)(x2+9x+24)
=(x+7)(x+2)(x2+9x+24)
(mình đã cố gắng giải thật chi tiết và phân tích triệt để nhất có thể rồi. có j sai sót thì góp ý nha!)
( x + 3 )( x+ 4 )( x+ 5 )( x+ 6 ) - 24
= ( x+ 3 )( x+ 6 )( x+ 4 )( x+ 5 ) - 24
( x^2 + 9x + 18 )( x^2 + 9x + 20 ) - 24
Đặt x^2 + 9x + 19 = a
= ( a - 1 )( a+ 1 ) - 24
= a^2 - 1 - 24
= a^2 - 25
= ( a- 5 )( a+ 5 )
= ( x^2 + 9x + 19 - 5 )( x^2 + 9x + 19 + 5 )
= ( x^2 + 9x + 14 )( x^2 + 9x + 24 )
Phân tích đa thức thành nhân tử : x^4 – x^3 – x + 1
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)