Cho x,y,z>0, x+y+z=2.Tìm Mn của
P=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z khác 0 , x+y khác z , y+z khác x và:
\(\frac{x^2+y^2-z^2}{2xy}-\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2zx}=1\)
Chứng minh rằng : \(x+y+z=0\)
thanks mn
Cho \(x,y,z>0\)
Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
cần gấp ạ, thanksss mn
\(VT\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-3\)
\(\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=VP^{\left(đpcm\right)}\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Cho x, y, z > 0 thỏa x+y+z=2. Tìm GTNN của
\(G=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Áp dụng bđt \(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\) được
\(G\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
\(G\ge1\Rightarrow MinG=1\Leftrightarrow\hept{\begin{cases}x=y=z>0\\x+y+z=2\end{cases}\Leftrightarrow}x=y=z=\frac{2}{3}\)
Cho x,y,z >0 thỏa mãn x+y+z=2
Tìm min \(P=\frac{x^2}{y+z}+\frac{z^2}{x+y}+\frac{y^2}{z+x}\)
Dễ dàng CM được BĐT sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)(BĐT Nestbit)
Vậy: \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge3\)
\(\Leftrightarrow P+a+b+c\ge3\Leftrightarrow P\ge3-2=1\)
Vậy Min P=1 <=> x=y=z=\(\frac{2}{3}\)
Cho x,y,z>0 và x+y+z=1
Tìm Min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)(dấu = xảy ra khi \(\left(y+z\right)^2=4x^2\)↔y+z=2x)
tương tự ta có:\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)(dấu = cũng xảy ra khi x+z=2y;x+y=2z)
cộng từng vế ta có:P+\(\frac{x+y+z}{2}\ge x+y+z\)
→P\(\ge\frac{x+y+z}{2}\)mà x+y+x=1
\(P\ge\frac{1}{2}\)↔\(\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}\)→x=y=z=1/3
cho x,y,z>0 và x+y+z=3 Tìm Min của : \(P=\frac{x+y}{\sqrt{x^2+y^2+6z}}+\frac{y+z}{\sqrt{y^2+z^2+6x}}+\frac{z+x}{\sqrt{z^2+x^2+6y}}\)
SEIFWJNHGRHFQ24FTW
Cho \(x+y+z\ne0,\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Tính \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)