#)Giải : (Thử nhé, k đúng thì thui :v)
Áp dụng BĐT Cauchy - Schwarz dạng engel :
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu ''='' xảy ra \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
#)Giải : (Thử nhé, k đúng thì thui :v)
Áp dụng BĐT Cauchy - Schwarz dạng engel :
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu ''='' xảy ra \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
Cho \(x,y,z>0\)
Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
cần gấp ạ, thanksss mn
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
Cho x, y, z > 0 thỏa x+y+z=2. Tìm GTNN của
\(G=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z >0 thỏa mãn x+y+z=2
Tìm min \(P=\frac{x^2}{y+z}+\frac{z^2}{x+y}+\frac{y^2}{z+x}\)
Cho x,y,z>0 thỏa mãn x+y+z=3
Tìm GTLN của \(T=\frac{x}{x^3+y^2+z}+\frac{y}{y^3+z^2+x}+\frac{z}{z^3+x^2+y}\)
Cho x,y,z > 0 thỏa mãn x+y+z = 2 . Tìm giá trị lớn nhất của A = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x,y,z>0 và x+y+z=2
tìm GTNN \(A=\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\)
Cho x, y, z>0 sao cho \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)
Tìm GTNN: \(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z là ba số thực dương thỏa x(x-z)+y(y-z)=0. Tìm GTNN của
\(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)