Những câu hỏi liên quan
KT
Xem chi tiết
HP
6 tháng 1 2021 lúc 12:36

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

Bình luận (0)
DH
Xem chi tiết
VC
Xem chi tiết
TL
Xem chi tiết
AN
20 tháng 8 2017 lúc 16:36

Điều kiện xác định tự làm nha b.

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)

\(\Rightarrow a^2+4b^2=10-3x\)

Từ đây ta có pt trở thành

\(3a-6b+4ab-a^2-4b^2=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

Tới đây đơn giản rồi b làm tiếp nhé

Bình luận (0)
VC
20 tháng 8 2017 lúc 16:54

91 nhé

đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)

bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi

Bình luận (0)
DH
Xem chi tiết
TG
28 tháng 11 2021 lúc 17:58

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

Bình luận (0)
DH
Xem chi tiết
H24
28 tháng 11 2021 lúc 16:20

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

Bình luận (0)
DH
Xem chi tiết
TG
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Bình luận (0)
TL
Xem chi tiết
NT
14 tháng 8 2017 lúc 21:18

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

Bình luận (0)
LL
14 tháng 8 2017 lúc 22:41

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

Bình luận (0)
H24
10 tháng 12 2019 lúc 9:25

Chi tiết một chút!

Bài 2:

ĐKXĐ:....

Đặt \(\sqrt{2x^2-6x+2}=t\ge0\Rightarrow2x^2-6x+2=t^2\)

Viết lại pt dưới dạng:

\(t^2+\left(x-1\right)t-6x^2+17x-12=0\)

\(\Leftrightarrow\left(t-2x+3\right)\left(t+3x-4\right)=0\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết