Những câu hỏi liên quan
KH
Xem chi tiết
NT
13 tháng 3 2023 lúc 13:26

Để đây là số nguyên tố thì 2<=2n^2-6n+2<=4

=>2n^2-6n=0 hoặc 2n^2-6n-2=0 hoặc 2n^2-6n-3=0

mà n tự nhiên

nên n=0 hoặc n=3

 

Bình luận (0)
TN
Xem chi tiết
NC
24 tháng 6 2019 lúc 15:57

Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo link này nhé!

Bình luận (0)
NL
Xem chi tiết
NC
24 tháng 6 2019 lúc 13:58

Với n là số tự nhiên

Ta có: \(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12=25^{n^2-3n}.25-12\)

Với \(n^2-3n=n\left(n-3\right)⋮2\)( vì n, n-3 1 trong 2 số sẽ có sỗ chẵn, hoặc chia trường hợp n chẵn và n lẻ để chứng minh nó chia hết cho 2)

Đặt: \(n^2-3n=2k\) 

=> \(5^{2n^2-6n+2}-12=25^{2k}.25-12\equiv\left(-1\right)^{2k}.25-12\equiv25-12\equiv0\left(mod13\right)\)

Mà \(5^{2n^2-6n+2}-12\)là số nguyên tố

=> \(5^{2n^2-6n+2}-12=13\Leftrightarrow5^{2n^2-6n+2}=25=5^2\Leftrightarrow2n^2-6n+2=2\)

\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\) thử lại thỏa mãn

Vậy n=0 hoặc n=3

Bình luận (0)
PN
Xem chi tiết
NH
Xem chi tiết
KN
Xem chi tiết
NQ
1 tháng 12 2017 lúc 20:52

B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)

Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1

=> n=4 hoặc n^3+2n^2+6=0

=> n=4 ( vì n^3+2n^2+6 > 0 )

Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)

Vậy n = 4

k mk nha

Bình luận (0)
DH
Xem chi tiết
NM
Xem chi tiết
DH
Xem chi tiết
H24
22 tháng 10 2016 lúc 21:55

\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)

\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)

\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)

Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.

\(\Rightarrow n-3=1\)

\(\Rightarrow n=4\)

Thử lại : \(B=103\left(TM\right)\)

 

Bình luận (0)