tìm x biết
a)x^3-6x^2+12x-8-x(x^2-4x+4)=0
b)x(x^2+2)=3x+6
Bài 4: Tìm x, biết.
a) 4x(x - 7) - 4x2 = 56
b) 12x(3x - 2) - (4 - 6x) = 0
c) 4(x - 5) - (5 - x)2 = 0
d) x(x +1) - x(x - 3) = 0
e) - 6x + 8 = 0 f) 2 + 2x + = 0
c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Tìm x, biết:
a.(x-3).(x+3)=(x-5)^2
b.(2x+1)^2-4x.(x-1)=17
c.(3x-2).(3x+2)-9.(x-1).x=0
d.(3-x)^3-(x+3)^3=36x^2-54x
e.x^3-6x^2+12x-8=27
Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9
Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25
Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25
Trừ x^2 từ cả hai phía:
-9 = -10x + 25
Trừ 25 từ cả hai vế:
-34 = -10 lần
Chia cả hai vế cho -10:
x = 3,4
b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1
Đặt vế trái bằng 17:
8x + 1 = 17
Trừ 1 cho cả hai vế:
8x = 16
Chia cả hai vế cho 8:
x = 2
c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x
Đặt vế trái bằng 0:
-4 + 9x = 0
Thêm 4 vào cả hai bên:
9x = 4
Chia cả hai vế cho 9:
x = 4/9
d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x
Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x
Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x
Chia cả hai vế cho x:
0 = 37x - 63
Thêm 63 vào cả hai bên:
63 = 37 lần
Chia cả hai vế cho 37:
x = 63/37
1) Tìm x
a) 3x(12x-5)-6x(6x-5)=0
b)x^2+3x-4
b) (a-3)x=a^2-9
2) tinh
a) (x^2-4x+4)/(x-2)
b) (4x^2-9y^2)/(2y+3y)
Tìm x, biết
a) 3x3-6x2=0
b) x(x-4)-12x+48=0
c) x(x-4) - (x2-8)
d) 2x(x-5) -x(2x+3)=16
e)(4x2-1) - (x-1)2 = -3
a) \(3x^3-6x^2=0\)
\(3x^2\left(x-2\right)=0\)
\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) \(x\left(x-4\right)-12x+48=0\)
\(x^2-4x-12x+48=0\)
\(x^2-16x+48=0\)
\(\left(x-12\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) Viết thiếu nha :v
d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)
\(2x^2-10x-x^2-2x^2-3x=16\)
\(-13x=16\)
\(x=-\frac{16}{13}\)
e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)
\(4x^2-1-x^2+2x-1=-3\)
\(3x^2-2+2x=-3\)
\(3x^2-2+2x+3=0\)
\(3x^2+1+2x=0\)
Vì \(3x^2+1+2x>0\)nên:
\(x\in\varnothing\)
A) 3x3 - 6x2 = 0
=> 3x2(x - 2) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) x(x - 4) - 12x + 48 = 0
=> x(x - 4) - 12(x - 4) = 0
=> (x - 12)(x - 4) = 0
=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8
\(a,3x^3-6x^2=0\Rightarrow3x^2\left(x-2\right)=0.\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
\(b,x\left(x-4\right)-12x+48=0\)
\(\Rightarrow x\left(x-4\right)-12\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-12=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=12\end{cases}}}\)
\(c,x\left(x-4\right)-\left(x^2-8\right)=0\)
\(\Rightarrow c,x^2-4x-x^2+8=0\)
\(\Rightarrow-4x+8=0\)
\(\Rightarrow-4\left(x-2\right)=0\)
\(\Rightarrow x=2\)
\(d,2x\left(x-5\right)-x\left(2x+3\right)=16\)
\(\Rightarrow2x^2-10x-2x^2-3x=16\)
\(\Rightarrow-13x=16\Leftrightarrow x=-\frac{16}{13}\)
\(e,\left(4x^2-1\right)-\left(x-1\right)^2=-3\)
\(\Rightarrow4x^2-1-x^2+2x-1=-3\)
\(\Rightarrow3x^2+2x+1=0\)
\(\Rightarrow x^2+\frac{2}{3}x+\frac{1}{3}=0\)
\(\Rightarrow x^2+2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)
\(\Rightarrow\left(x+\frac{1}{3}\right)^2+\frac{2}{9}=0\)( vô lý )
Vậy phương trình vô nghiệm
Tìm x
a,(x2-4x+16)+(x+4)-x*(x+1)*(x+2)+3x2=0
b,(8x+2)*(1-3x)+(6x-1)*(4x-10)=-50
c,(x2+2x+4)*(2-x)+x*(x-3*(x+4))-x2+24=0
d,(x/2+3)*(5-6x)+(12x-2)*(x/4+3)=0
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
Giúp mình với nhanh nhanh nhé, cảm ơn a) ( x^2 + x )^2 + 2( x^2 + x ) - 8 = 0 b) ( x^2 - 4x +3 ) ( x^2 +6x + 8 ) + 24 = 0 c) 6x^4 + 25x^3 + 12x^2 - 25x + 6 = 0 d) ( x - 2 )^4 + ( x- 3 )^4 = 0
a: \(\left(x^2+x\right)^2+2\left(x^2+x\right)-8=0\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
hay \(x\in\left\{-2;1\right\}\)
b: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x+4\right)+24=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-12\right)+24=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-14\left(x^2+x\right)+48=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x-8\right)=0\)
hay \(x\in\left\{-3;2;\dfrac{-1+\sqrt{33}}{2};\dfrac{-1-\sqrt{33}}{2}\right\}\)
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
a, (3x-2) (x+6) (x^2 +5) = 0
b, (2x+5)^2 = (3x-1)^2
c, 4x^2 (x-1) - x+1 = 0
d, 9 (2x+1) = 4(x-5)^2
e, x^3 - 4x^2 - 12x +27 = 0
f, x^3 + 3x^2 -6x -8 =0
đề là gì
a)\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2=0\\x+6=0\\x^2+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2\\x=-6\\x^2=-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\x=-6\\x\in\varnothing\end{cases}}}\)
vậy x=2/3 hoặc x=-6
a, (3x-2) (x+6) (x^2 +5) = 0
<=> 3x - 2 = 0 hoặc x + 6 = 0 hoặc x2 + 5 = 0 (loại vì x2 \(\ge\)0 => x2 + 5 > 0)
<=> x = 2/3 hoặc x = -6
b, (2x+5)^2 = (3x-1)^2
<=> (2x + 5)2 - (3x - 1)2 = 0
<=> (2x + 5 - 3x + 1)(2x + 5 + 3x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-3x+6=0\\2x+3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-x=-6\\5x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=6\\x=\frac{4}{5}\end{cases}}}\)
c, 4x2 (x-1) - x+1 = 0
<=> 4x2(x - 1) - (x - 1) = 0
<=> (x - 1)(4x2 - 1) = 0
<=> (x - 1)(2x - 1)(2x + 1) = 0
vậy x - 1 = 0 hoặc 2x - 1 = 0 hoặc 2x + 1 = 0
hay x = 1 hoặc x = 1/2 hoặc x = -1/2